인공지능이 IoT 애플리케이션에 가치를 제공할 수 있습니까?
IoT 기술 분야에 종사한다면 인공 지능의 중요성과 이점을 이해하는 것이 필수적입니다. 이 섹션에서는 AI와 관련된 모든 측면을 논의하여 이 주제에 대한 명확한 이해를 얻을 수 있도록 하겠습니다.
오늘날 IoT 애플리케이션에는 시각적 인식, 미래 이벤트 예측 및 개체 식별이 포함됩니다.
"IoT 애플리케이션은 무엇이 다를까?"라고 궁금해하실 수도 있습니다. IoT 애플리케이션은 홈 오토메이션, 헬스케어, 제조 등 다양한 용도로 사용됩니다. 스마트시티에서도 활용 가능하다.
인공지능 알고리즘을 사용하면 시스템이 독립적으로 평가하고, 학습하고, 행동할 수 있습니다.
인공지능 알고리즘을 사용하면 시스템이 독립적으로 평가하고, 학습하고, 행동할 수 있습니다. 또한 가상의 두뇌나 마음을 만드는 데에도 사용할 수 있습니다.
기술은 경험을 통해 배울 수 있고 스스로 새로운 것을 배우는 타고난 능력을 갖도록 설계되었습니다. 이는 장치나 시스템이 특정 기술을 학습하도록 하려면 본인이나 다른 사람(예: 직원)이 일부 데이터를 입력해야 함을 의미합니다.
머신러닝은 인공지능의 또 다른 분야입니다.
머신러닝은 인공지능의 또 다른 분야입니다. 이를 통해 프로그램은 거대한 데이터 세트를 분석하고 필요할 때 스스로 결정을 내릴 수 있습니다. 머신러닝은 이미지 분류, 음성 인식, 추천 엔진 등 다양한 목적으로 사용될 수 있습니다.
머신 러닝은 사람의 개입이 필요한 프로세스를 자동화하기 위해 데이터를 사용하여 패턴을 학습합니다. 예를 들어, 자율주행차(AV)는 이를 사용하여 야간에 교통 표지판과 도로 상태를 인식할 수 있으므로 설계자나 설계자가 제공한 지침에만 의존하는 대신 주변 환경을 기반으로 특정 도로에서 얼마나 빨리 운전할 수 있는지 알 수 있습니다. 이 길을 잘 아는 사람.
딥 러닝은 머신 러닝의 가장 좋은 예입니다
딥 러닝은 인공 신경망(ANN)을 사용하여 패턴 인식 및 분류 작업을 수행하는 머신 러닝의 한 유형입니다. 이는 각 계층에 여러 개의 뉴런이 있고 과거 경험을 통해 학습하는 다층 ANN에 의존합니다.
인간의 두뇌는 다양한 방식으로 정보를 인식하고 처리할 수 있기 때문에 딥 러닝 시스템의 한 예입니다. 이 능력을 통해 우리는 언어를 이해하고, 얼굴을 인식하고, 책을 읽고, 이전 상황에서 얻은 경험이나 지식을 바탕으로 결정을 내릴 수 있습니다.
인공지능에는 많은 데이터가 필요합니다
인공지능 기술에는 많은 데이터가 필요하며, 제조업체는 IoT 기기에서 수집한 데이터를 활용할 수 있습니다. AI 모델을 훈련하는 데 사용할 수 있는 데이터가 많을수록 성능이 향상됩니다. 예를 들어, 집의 온도를 모니터링하고 정상적인 매개변수를 벗어난 변화(예: 2도 하락)를 감지하면 경고를 보내는 IoT 장치가 있는 경우 이 정보를 사용하여 예측 모델을 훈련할 수 있습니다. 기타 요인(예: 날씨 패턴 또는 과거 패턴)을 통해 장치가 곧 또 다른 한파가 올지 예측할 수 있습니다.
이러한 유형의 분석은 난방 시스템이나 에어컨과 같은 장비 유지 관리와 관련된 비용을 줄이는 데 도움이 됩니다. 이러한 시스템은 위치에 따라 고온/저온용으로 특별히 설계되었지만 정기적으로 그리고 시간이 지남에 따라 모니터링되지 않는 경우 난방/냉방 주기 사이의 순환(특히 겨울철)으로 인해 발생하는 마모로 인해 효율성이 떨어집니다.
IoT와 AI는 집이나 직장에서 말하거나 타이핑하지 않고도 기계에 지시를 내릴 수 있습니다.
위의 예에서 볼 수 있듯이 AI와 IoT는 단순히 함께 작동하는 두 가지 이상의 기술입니다. 그들은 실제로 일부 영역에서 서로를 보완하여 사람들이 말하거나 타이핑하지 않고도 집이나 직장에서 기계에 지시를 내릴 수 있도록 해줍니다.
이 외에도 다음과 같은 이점이 있습니다.
IoT 애플리케이션에서 AI를 사용하면 환경에서 학습하고 그에 따라 적응할 수 있는 시스템을 만들 수 있습니다. 이는 사전 정의된 규칙(예: , "이런 조건이 충족되면 이렇게 하세요"). 예를 들어, 자율주행차는 일기예보를 포함한 도로 상황에 대한 다양한 데이터에 접근할 수 있기 때문에 인간 운전자보다 교통 패턴을 더 잘 인식할 수 있습니다. 따라서 오늘 오후에 폭우가 예보된 경우 자동차는 일몰까지 남은 시간은 물론, 어두워진 후 주차 장소를 찾아 시내를 돌아다닐 때 빛이 충분한지 여부도 알 수 있습니다!
이 블로그를 마무리했습니다
저는 IoT 애플리케이션에 AI를 사용하는 것과 관련된 모든 중요한 측면을 논의했습니다.
인공 지능은 환경을 인식하고 특정 목표 달성 성공 가능성을 최대화하기 위해 조치를 취할 수 있는 소프트웨어인 지능형 에이전트의 설계 및 개발과 관련된 컴퓨터 과학의 한 분야입니다. 이는 공학, 철학, 법학, 생물학, 경제학 분야에서 50년 이상 사용되어 왔습니다.
최초의 인공 지능(AI) 시스템은 1956년 John McCarthy에 의해 만들어졌습니다. 그는 논리적 규칙만 사용하여 공정한 방식으로 상대방을 이길 수 있을 때까지 스스로 대결하는 체커 게임이라는 기계 학습 테스트를 개발했습니다. 전화선으로 함께 연결된 두 대의 컴퓨터를 사용하여 수행되었습니다. 이후 시스템은 대신 특수 하드웨어를 사용했지만 여전히 원래 디자인의 속도로 인해 제한되었습니다(게임 상태만 처리할 수 있음).
결국 인공지능은 가장 유망한 기술 중 하나이며 IoT를 더욱 스마트하게 만드는 데 중요한 역할을 할 것입니다. 인공지능을 사용하면 데이터 수집, 분석, 의사결정과 관련된 문제를 해결하는 데 도움이 될 수 있습니다.
위 내용은 인공지능이 IoT 애플리케이션에 가치를 제공할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

7월 5일 이 웹사이트의 소식에 따르면 글로벌파운드리는 올해 7월 1일 보도자료를 통해 타고르 테크놀로지(Tagore Technology)의 전력질화갈륨(GaN) 기술 및 지적재산권 포트폴리오 인수를 발표하고 자동차와 인터넷 시장 점유율 확대를 희망하고 있다고 밝혔다. 더 높은 효율성과 더 나은 성능을 탐구하기 위한 사물 및 인공 지능 데이터 센터 응용 분야입니다. 생성 AI와 같은 기술이 디지털 세계에서 계속 발전함에 따라 질화갈륨(GaN)은 특히 데이터 센터에서 지속 가능하고 효율적인 전력 관리를 위한 핵심 솔루션이 되었습니다. 이 웹사이트는 이번 인수 기간 동안 Tagore Technology의 엔지니어링 팀이 GLOBALFOUNDRIES에 합류하여 질화갈륨 기술을 더욱 개발할 것이라는 공식 발표를 인용했습니다. G
