목차
PandaLM의 특징
Summary
기술 주변기기 일체 포함 Peking University, West Lake University 등의 오픈 소스 '심판 대형 모델'인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

Peking University, West Lake University 등의 오픈 소스 '심판 대형 모델'인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

May 19, 2023 am 11:55 AM
모델 오픈 소스

ChatGPT 출시 이후 자연어 처리 분야의 생태계가 완전히 바뀌었습니다. 이전에는 해결할 수 없었던 많은 문제가 ChatGPT를 사용하여 해결될 수 있습니다.

하지만 문제도 발생합니다. 대형 모델의 성능이 너무 강하고, 각 모델의 차이점을 육안으로 평가하기가 어렵습니다.

예를 들어, 서로 다른 기본 모델과 하이퍼파라미터를 사용하여 여러 버전의 모델을 훈련하는 경우 성능은 예제와 유사할 수 있으며 두 모델 간의 성능 격차를 완전히 정량화하는 것은 불가능합니다.

현재 대규모 언어 모델을 평가하는 데는 두 가지 주요 옵션이 있습니다. 1 평가를 위해 OpenAI의 API 인터페이스를 호출합니다.

ChatGPT는 두 모델의 출력 품질을 평가하는 데 사용할 수 있습니다. 그러나 ChatGPT는 반복적으로 업그레이드되어 서로 다른 시기에 동일한 질문에 대한 응답이 다를 수 있다는 문제가 있습니다. 재현

.

2. 수동 주석

크라우드소싱 플랫폼에서 수동 주석을 요청하면 자금이 부족한 팀이 이를 감당하지 못할 수도 있고, 제3자 회사에서

데이터가 유출

되는 경우도 있습니다. 이러한 "대규모 모델 평가 문제"를 해결하기 위해 Peking University, Westlake University, North Carolina State University, Carnegie Mellon University 및 MSRA의 연구원들은 협력하여 새로운 언어 모델 평가 프레임워크 PandaLM을 개발하기 위해 노력했습니다. -보존 가능하고 신뢰할 수 있으며 재현 가능하고 저렴한 대형 모델 평가 솔루션입니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드프로젝트 링크: https://github.com/WeOpenML/PandaLM

PandaLM은 동일한 컨텍스트를 제공하여 다양한 LLM의 응답 출력을 비교하고 구체적인 이유를 제공할 수 있습니다.

도구의 신뢰성과 일관성을 입증하기 위해 연구원들은 약 1,000개의 샘플로 구성된 다양한 사람이 라벨을 붙인 테스트 데이터세트를 만들었고, 여기서 PandaLM-7B는 ChatGPT 평가 기술의 94% 정확도를 달성했습니다.

PandaLM을 사용하는 세 줄의 코드두 개의 서로 다른 대형 모델이 동일한 지시 및 컨텍스트에 대해 서로 다른 응답을 생성하는 경우 PandaLM은 두 개의 대형 모델의 응답 품질을 비교하고 비교 결과와 비교 이유를 출력하는 것을 목표로 합니다. 그리고 참고용 답변.

세 가지 비교 결과가 있습니다. 응답 1이 더 좋고, 응답 2가 더 좋고, 응답 1과 응답 2의 품질이 비슷합니다.

여러 대형 모델의 성능을 비교할 때 PandaLM을 사용하여 쌍별로 비교한 다음 쌍별 비교 결과를 요약하여 여러 대형 모델의 성능 순위를 지정하거나 모델 부분 순서 관계 다이어그램을 그리면 됩니다. 다양한 모델 간의 성능 차이를 명확하고 직관적으로 분석합니다.

PandaLM은 "로컬 배포"만 필요하고 "사람의 참여는 필요하지 않습니다". 따라서 PandaLM의 평가는 개인 정보를 보호할 수 있고 상당히 저렴합니다.

더 나은 해석 가능성을 제공하기 위해 PandaLM은 선택 항목을 자연어로 설명하고 추가 참조 응답 세트를 생성할 수도 있습니다.

이 프로젝트에서 연구원들은 사례 분석을 용이하게 하기 위해 웹 UI를 사용하여 PandaLM을 사용할 수 있도록 지원할 뿐만 아니라 임의의 모델과 데이터에서 생성된 텍스트 평가를 위해 PandaLM을 호출하는 세 줄의 코드도 지원합니다. Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

많은 기존 모델과 프레임워크가 오픈 소스가 아니거나 로컬에서 추론을 완료하기 어렵다는 점을 고려하여 PandaLM은 지정된 모델 가중치를 사용하여 평가할 텍스트를 생성하거나 평가할 텍스트가 포함된 .json 파일을 직접 전달할 수 있도록 지원합니다.

사용자는 모델 이름/HuggingFace 모델 ID 또는 .json 파일 경로가 포함된 목록을 전달하기만 하면 PandaLM을 활용하여 사용자 정의 모델과 입력 데이터를 평가할 수 있습니다. 다음은 최소한의 사용 예입니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

모든 사람이 무료 평가를 위해 PandaLM을 유연하게 사용할 수 있도록 연구원들은 또한 Huggingface 웹사이트에 PandaLM의 모델 가중치를 게시했습니다. 다음 명령 PandaLM-7B 모델:

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

PandaLM의 특징

Reproducibility

언어 모델의 출력이 무작위성이더라도 PandaLM의 가중치는 공개되므로, 언제 수정됨 무작위 시딩 후에도 PandaLM의 평가 결과는 여전히 일관성을 유지할 수 있습니다.

온라인 API를 기반으로 한 모델 업데이트는 불투명하고 출력이 시점에 따라 매우 불일치할 수 있으며 이전 버전의 모델에 더 이상 액세스할 수 없으므로 온라인 API를 기반으로 한 평가가 실패하는 경우가 많습니다. 재생할 수 있는.

자동화, 개인 정보 보호 및 낮은 오버헤드

PandaLM 모델을 로컬로 배포하고 기성 명령을 호출하기만 하면 다양한 대형 모델 평가를 시작할 수 있습니다. 전문가를 고용할 때처럼 전문가와 계속 연락할 필요가 없습니다. Annotation 통신 중 데이터 유출 문제가 없으며, API 비용이나 인건비가 전혀 들지 않아 매우 저렴합니다.

평가 수준

PandaLM의 신뢰성을 입증하기 위해 연구원들은 세 명의 전문가를 고용하여 독립적인 반복 주석을 수행하고 수동으로 주석이 달린 테스트 세트를 만들었습니다.

테스트 세트에는 50개의 다양한 장면이 포함되어 있으며 각 장면에는 여러 작업이 포함되어 있습니다. 이 테스트 세트는 다양하고 신뢰할 수 있으며 텍스트에 대한 인간의 선호도와 일치합니다. 테스트 세트의 각 샘플은 지침과 컨텍스트, 그리고 서로 다른 대형 모델에서 생성된 두 가지 응답으로 구성되며, 두 응답의 품질을 사람이 비교합니다.

최종 테스트 세트에서 각 주석자의 IAA(Inter Annotator Agreement)가 0.85에 가까워지도록 주석자 간에 차이가 큰 샘플을 선별합니다. PandaLM의 훈련 세트는 생성된 수동으로 주석이 달린 테스트 세트와 겹치지 않는다는 점에 주목할 가치가 있습니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

이러한 필터링된 샘플에는 판단을 돕기 위해 추가 지식이 필요하거나 얻기 어려운 정보가 필요하므로 인간이 정확하게 라벨을 붙이기가 어렵습니다.

필터링된 테스트 세트에는 1000개의 샘플이 포함되어 있고, 필터링되지 않은 원래 테스트 세트에는 2500개의 샘플이 포함되어 있습니다. 테스트 세트의 분포는 {0:105, 1:422, 2:472}입니다. 여기서 0은 두 응답의 품질이 유사함을 나타내고, 1은 응답 1이 더 우수함을 나타내고, 2는 응답 2가 더 우수함을 나타냅니다. 인간 테스트 세트를 벤치마크로 삼아 PandaLM과 gpt-3.5-turbo의 성능 비교는 다음과 같습니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

PandaLM-7B가 gpt-3.5-turbo 94 수준에 도달했음을 알 수 있습니다. 정확도, 재현율, F1 점수 측면에서 PandaLM-7B는 gpt-3.5-turbo와 거의 동일합니다.

그러므로 gpt-3.5-turbo와 비교하면 PandaLM-7B는 이미 상당한 대형 모델 평가 능력을 갖추고 있다고 볼 수 있습니다.

테스트 세트의 정확도, 정밀도, 재현율, F1 점수 외에도 비슷한 크기의 대형 오픈소스 모델 5개 간의 비교 결과도 제공합니다.

먼저 동일한 훈련 데이터를 사용하여 5개 모델을 미세 조정한 다음 인간, gpt-3.5-turbo 및 PandaLM을 사용하여 5개 모델을 각각 비교했습니다.

아래 표의 첫 번째 행에 있는 첫 번째 튜플(72, 28, 11)은 Bloom-7B보다 우수한 LLaMA-7B 응답이 72개 있고, Bloom-7B보다 우수한 LLaMA-7B 응답이 28개 있음을 나타냅니다. 7B 차이점은 두 모델이 11가지 유사한 응답 품질을 가지고 있다는 것입니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

그래서 이 예에서 인간은 LLaMA-7B가 Bloom-7B보다 낫다고 생각합니다. 다음 세 표의 결과는 인간, gpt-3.5-turbo 및 PandaLM-7B가 각 모델의 장단점 간의 관계에 대해 완전히 일관된 판단을 가지고 있음을 보여줍니다.

Peking University, West Lake University 등의 오픈 소스 심판 대형 모델인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드

Summary

PandaLM은 인간 평가, OpenAI API 평가 외에 대형 모델 평가를 위한 세 번째 솔루션을 제공합니다. 평가 수준이 높을 뿐만 아니라 평가 결과가 재현 가능하고 평가도 우수합니다. 프로세스가 자동화되고 개인 정보가 보호되며 오버헤드가 낮습니다.

앞으로도 PandaLM은 학계와 산업계에서 대형 모델에 대한 연구를 추진하여 더 많은 사람들이 대형 모델 개발의 혜택을 누릴 수 있도록 하겠습니다.

위 내용은 Peking University, West Lake University 등의 오픈 소스 '심판 대형 모델'인 PandaLM: ChatGPT의 94% 정확도로 LLM을 완전히 자동으로 평가하는 세 줄의 코드의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. 크로스 플레이가 있습니까?
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. 중국의 기능은 GPT-4와 비슷하며 가격은 GPT-4-Turbo의 거의 1%에 불과합니다. May 07, 2024 pm 04:13 PM

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | AI가 수학적 연구를 전복시킨다! 필즈상 수상자이자 중국계 미국인 수학자, Terence Tao가 좋아하는 11개 논문 발표 | Apr 09, 2024 am 11:52 AM

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. MLP를 대체하는 KAN은 오픈소스 프로젝트를 통해 컨볼루션으로 확장되었습니다. Jun 01, 2024 pm 10:03 PM

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

권장 사항: 우수한 JS 오픈 소스 얼굴 감지 및 인식 프로젝트 권장 사항: 우수한 JS 오픈 소스 얼굴 감지 및 인식 프로젝트 Apr 03, 2024 am 11:55 AM

얼굴 검출 및 인식 기술은 이미 상대적으로 성숙하고 널리 사용되는 기술입니다. 현재 가장 널리 사용되는 인터넷 응용 언어는 JS입니다. 웹 프런트엔드에서 얼굴 감지 및 인식을 구현하는 것은 백엔드 얼굴 인식에 비해 장점과 단점이 있습니다. 장점에는 네트워크 상호 작용 및 실시간 인식이 줄어 사용자 대기 시간이 크게 단축되고 사용자 경험이 향상된다는 단점이 있습니다. 모델 크기에 따라 제한되고 정확도도 제한됩니다. js를 사용하여 웹에서 얼굴 인식을 구현하는 방법은 무엇입니까? 웹에서 얼굴 인식을 구현하려면 JavaScript, HTML, CSS, WebRTC 등 관련 프로그래밍 언어 및 기술에 익숙해야 합니다. 동시에 관련 컴퓨터 비전 및 인공지능 기술도 마스터해야 합니다. 웹 측면의 디자인으로 인해 주목할 가치가 있습니다.

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 FisheyeDetNet: 어안 카메라를 기반으로 한 최초의 표적 탐지 알고리즘 Apr 26, 2024 am 11:37 AM

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.

See all articles