번역가 | Li Rui
리뷰어 | Sun Shujuan
텍스트 분류는 텍스트를 하나 이상의 다른 범주로 분류하여 매개변수로 구성, 구성 및 필터링하는 프로세스입니다. 예를 들어, 텍스트 분류는 법률 문서, 의학 연구 및 문서 또는 단순히 제품 리뷰에 사용됩니다. 데이터는 그 어느 때보다 중요합니다. 많은 기업에서는 최대한 많은 통찰력을 얻기 위해 막대한 비용을 지출합니다.
텍스트/문서 데이터가 다른 데이터 유형보다 훨씬 풍부해짐에 따라 새로운 방법을 사용하는 것이 필수적입니다. 데이터는 본질적으로 구조화되어 있지 않고 매우 풍부하기 때문에 이해하기 쉬운 방식으로 데이터를 구성하면 데이터의 가치가 크게 높아질 수 있습니다. 텍스트 분류 및 기계 학습을 사용하여 관련 텍스트를 더 빠르고 비용 효율적으로 자동 구성합니다.
다음은 텍스트 분류, 작동 방식, 가장 잘 알려진 알고리즘을 정의하고 텍스트 분류 여정을 시작하는 데 유용할 수 있는 데이터 세트를 제공합니다.
일부 기본 방법은 다양한 텍스트 문서를 어느 정도 분류할 수 있지만 가장 일반적인 방법은 기계 학습을 사용합니다. 텍스트 분류 모델은 배포되기 전에 6가지 기본 단계를 거칩니다.
데이터 세트는 모델의 데이터 소스로 사용되는 원시 데이터 블록입니다. 텍스트 분류의 경우 지도 학습 알고리즘이 사용되어 레이블이 지정된 데이터를 기계 학습 모델에 제공합니다. 레이블이 지정된 데이터는 알고리즘에 대해 사전 정의되고 정보로 레이블이 지정된 데이터입니다.
머신 러닝 모델은 숫자 값만 이해할 수 있으므로 모델이 데이터를 올바르게 식별할 수 있도록 제공된 텍스트를 토큰화하고 텍스트를 삽입해야 합니다.
토큰화는 텍스트 문서를 토큰이라는 작은 부분으로 분할하는 프로세스입니다. 토큰은 전체 단어, 하위 단어 또는 개별 문자로 표시될 수 있습니다. 예를 들어 다음과 같이 작업에 더욱 지능적으로 태그를 지정할 수 있습니다.
토큰화가 왜 중요한가요? 텍스트 분류 모델은 토큰 기반 수준에서만 데이터를 처리할 수 있고 완전한 문장을 이해하고 처리할 수 없기 때문입니다. 모델은 주어진 데이터를 쉽게 소화하기 위해 주어진 원시 데이터 세트의 추가 처리가 필요합니다. 불필요한 기능을 제거하고 null 및 무한 값 등을 필터링합니다. 전체 데이터 세트를 재구성하면 훈련 단계에서 편견을 방지하는 데 도움이 됩니다.
알고리즘의 정확성을 테스트하기 위해 데이터 세트의 20%를 유지하면서 데이터 세트의 80%에 대해 데이터를 훈련하길 바랍니다.
훈련 데이터 세트를 사용하여 모델을 실행하면 알고리즘은 숨겨진 패턴과 통찰력을 식별하여 제공된 텍스트를 다양한 카테고리로 분류할 수 있습니다.
다음으로 3단계에서 언급한 테스트 데이터 세트를 사용하여 모델의 무결성을 테스트합니다. 실제 결과를 기준으로 모델의 정확성을 테스트하기 위해 테스트 데이터 세트에 라벨이 지정되지 않습니다. 모델을 정확하게 테스트하려면 모델 과적합을 방지하기 위해 테스트 데이터 세트에 새로운 테스트 사례(이전 교육 데이터 세트와 다른 데이터)가 포함되어야 합니다.
과적합이나 높은 분산을 생성하지 않고 모델의 다양한 하이퍼 매개변수를 조정하여 기계 학습 모델을 조정합니다. 하이퍼파라미터는 모델의 학습 과정을 제어하는 값을 갖는 매개변수입니다. 이제 배포할 준비가 되었습니다.
위에 언급된 필터링 프로세스 동안 기계 및 딥 러닝 알고리즘은 숫자 값만 이해할 수 있으므로 개발자는 데이터세트에 일부 단어 임베딩 기술을 수행해야 합니다. 단어 임베딩은 단어를 주어진 단어의 의미를 인코딩하는 실수 벡터로 표현하는 프로세스입니다.
다음은 가장 유명하고 효과적인 텍스트 분류 알고리즘 중 세 가지입니다. 각 방법에는 추가로 정의된 알고리즘이 내장되어 있다는 점을 기억하는 것이 중요합니다.
선형 지원 벡터 머신 알고리즘은 현재 최고의 텍스트 분류 알고리즘 중 하나로 간주됩니다. 주어진 특징을 기반으로 주어진 데이터 포인트를 그린 다음 가장 적합한 선을 그립니다. 그리고 데이터를 다양한 카테고리로 분류합니다.
로지스틱 회귀는 회귀의 하위 범주로 주로 분류 문제에 중점을 둡니다. 이는 결정 경계, 회귀 및 거리를 사용하여 데이터 세트를 평가하고 분류합니다.
Naive Bayes 알고리즘은 개체가 제공하는 기능을 기반으로 다양한 개체를 분류합니다. 그런 다음 추가 해결 및 분류를 위해 이러한 그룹 분류를 추론하기 위해 그룹 경계가 그려집니다.
낮은 품질의 데이터를 알고리즘에 제공하면 미래 예측이 좋지 않게 됩니다. 기계 학습 실무자의 일반적인 문제는 훈련 모델에 너무 많은 데이터 세트가 제공되고 불필요한 기능이 포함된다는 것입니다. 관련 없는 데이터를 과도하게 사용하면 모델 성능이 저하됩니다. 그리고 데이터 세트를 선택하고 구성하는 데 있어서는 적을수록 좋습니다.
훈련 데이터와 테스트 데이터의 잘못된 비율은 모델 성능에 큰 영향을 미칠 수 있으며 데이터의 섞기와 필터링에 영향을 미칠 수 있습니다. 정확한 데이터 포인트는 원치 않는 다른 요인에 의해 방해받지 않으며 훈련된 모델은 더 효율적으로 수행됩니다.
모델을 훈련할 때 모델의 요구 사항을 충족하는 데이터 세트를 선택하고, 불필요한 값을 필터링하고, 데이터 세트를 섞고, 최종 모델의 정확도를 테스트하세요. 알고리즘이 단순할수록 컴퓨팅 시간과 리소스가 덜 필요하며, 최고의 모델은 복잡한 문제를 해결할 수 있는 가장 단순한 모델입니다.
훈련이 최고조에 달하면 훈련이 계속됨에 따라 모델의 정확도가 점차 감소합니다. 이를 과적합이라고 합니다. 훈련이 너무 오래 지속되기 때문에 모델이 예상치 못한 패턴을 학습하기 시작합니다. 학습 세트에서 높은 정확도를 달성할 때는 주의해야 합니다. 주요 목표는 테스트 세트(모델이 이전에 본 적이 없는 데이터)에 기반을 둔 정확도를 갖는 모델을 개발하는 것이기 때문입니다.
반면에 과소적합은 훈련된 모델이 아직 개선의 여지가 있고 아직 최대 잠재력에 도달하지 않았음을 의미합니다. 제대로 훈련되지 않은 모델은 훈련 기간이 길거나 데이터세트를 과도하게 정규화하는 데서 비롯됩니다. 이는 간결하고 정확한 데이터를 갖는다는 것이 무엇을 의미하는지를 예시합니다.
모델을 훈련할 때 가장 적합한 지점을 찾는 것이 중요합니다. 데이터세트를 80/20으로 분할하는 것이 좋은 시작이지만 특정 모델이 최적으로 수행하려면 매개변수를 조정하는 것이 필요할 수 있습니다.
이 문서에서는 자세히 언급하지 않았지만 텍스트 분류 문제에 올바른 텍스트 형식을 사용하면 더 나은 결과를 얻을 수 있습니다. 텍스트 데이터를 표현하는 몇 가지 방법으로는 GloVe, Word2Vec 및 임베딩 모델이 있습니다.
올바른 텍스트 형식을 사용하면 모델이 데이터 세트를 읽고 해석하는 방식이 향상되어 결과적으로 패턴을 이해하는 데 도움이 됩니다.
레이블이 지정되고 바로 사용할 수 있는 많은 데이터 세트를 통해 언제든지 모델 요구 사항을 충족하는 완벽한 데이터 세트를 검색할 수 있습니다.
어떤 것을 사용할지 결정하는 데 몇 가지 문제가 있을 수 있지만 대중에게 제공되는 가장 잘 알려진 데이터 세트 중 일부는 아래에서 권장됩니다.
Kaggle 등. 웹사이트에는 모든 주제를 다루는 다양한 데이터 세트가 포함되어 있습니다. 연습을 위해 위의 여러 데이터 세트에서 모델을 실행해 볼 수 있습니다.
지난 10년 동안 기계 학습이 큰 영향을 미쳤으므로 기업에서는 기계 학습을 활용하여 프로세스를 자동화하기 위해 가능한 모든 방법을 시도하고 있습니다. 리뷰, 게시물, 기사, 저널 및 문서는 모두 텍스트에서 매우 중요합니다. 그리고 사용자 통찰력과 패턴을 추출하기 위해 다양한 창의적인 방법으로 텍스트 분류를 사용함으로써 기업은 데이터를 기반으로 결정을 내릴 수 있습니다. 전문가는 이전보다 더 빠르게 귀중한 정보에 액세스하고 배울 수 있습니다.
원제:텍스트 분류란 무엇입니까?, 저자: Kevin Vu
위 내용은 텍스트 분류란 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!