트랜스포머보다 40% 빠르다! Meta, 컴퓨팅 전력 손실 문제를 해결하기 위해 새로운 Megabyte 모델 출시
Transformer는 의심할 여지 없이 지난 몇 년간 기계 학습 분야에서 가장 인기 있는 모델입니다.
2017년 "Attention is All You Need" 논문에서 제안된 이후, 이 새로운 네트워크 구조는 주요 번역 작업에서 폭발적으로 증가하며 많은 새로운 기록을 만들어냈습니다.
그러나 Transformer에는 긴 바이트 시퀀스를 처리할 때 결함, 즉 심각한 컴퓨팅 성능 손실이 있는데, Meta 연구진의 최신 결과는 이 결함을 잘 해결할 수 있습니다.
그들은 다양한 형식에 걸쳐 1백만 개 이상의 토큰을 생성할 수 있고 GPT-4와 같은 모델 뒤에 있는 기존 Transformer 아키텍처의 기능을 능가할 수 있는 새로운 모델 아키텍처를 출시했습니다.
이 모델은 "Megabyte"라고 불리며, 100만 바이트 이상의 시퀀스에 대해 종단 간 차별화를 수행할 수 있는 다중 규모 디코더 아키텍처입니다.
문서 링크: https://arxiv.org/abs/2305.07185
왜 Megabyte가 Transformer보다 나은가요? 먼저 Transformer의 단점을 살펴보아야 합니다.
Transformer의 단점
지금까지 OpenAI의 GPT-4, Google의 Bard 등 여러 종류의 고성능 생성 AI 모델은 모두 Transformer 아키텍처를 기반으로 한 모델입니다.
그러나 Meta의 연구팀은 인기 있는 Transformer 아키텍처가 한계점에 도달했다고 믿습니다. 주된 이유는 Transformer 설계에 내재된 두 가지 중요한 결함 때문입니다.
- 입력 및 출력 바이트 길이가 증가함에 따라 비용이 증가합니다. 입력 음악, 이미지 또는 비디오 파일과 같이 self-attention도 빠르게 증가합니다. 일반적으로 수 메가바이트를 포함하지만 대규모 디코더(LLM)는 일반적으로 수천 개의 컨텍스트 태그만 사용합니다.
- 일련의 수학을 통한 피드포워드 네트워크 연산 및 변환은 언어 모델이 단어를 이해하고 처리하는 데 도움이 되지만, 위치별로 확장성을 달성하기는 어렵습니다. 이러한 네트워크는 문자 그룹이나 위치에서 독립적으로 작동하므로 계산 오버헤드가 커집니다. Transformer와 비교할 때 Megabyte 모델은 입력 및 출력 시퀀스를 개별 토큰이 아닌 패치로 나누는 독특하고 다른 아키텍처를 보여줍니다.
아래와 같이 각 패치에서 로컬 AI 모델이 결과를 생성하고, 글로벌 모델이 모든 패치의 최종 출력을 관리하고 조정합니다.
먼저, 바이트 시퀀스는 대략 토큰과 유사한 고정 크기 패치로 구분됩니다.
(1) 패치 임베더: 무손실 연결 각 바이트 임베딩. 간단히 패치를 인코딩하기
(2) 글로벌 모델: 입력 및 출력 패치로 표현되는 대규모 자동 회귀 변환기(3) 로컬 모델: 패치에서 예측된 단어 연구원들은 바이트 예측을 관찰했습니다. 대부분의 작업(예: 처음 몇 글자가 주어진 단어 완성)에서 상대적으로 쉽습니다. 즉, 바이트당 큰 네트워크가 필요하지 않으며 내부 예측에 더 작은 모델을 사용할 수 있습니다.
미래에는 무슨 일이 일어날까요
이 접근 방식은 오늘날의 AI 모델에서 널리 퍼져 있는 확장성 문제를 해결합니다. Megabyte 모델의 패치 시스템을 사용하면 여러 토큰이 포함된 패치에서 단일 피드포워드 네트워크를 실행할 수 있어 셀프 어텐션 스케일링 문제를 효과적으로 해결할 수 있습니다.
그 중 Megabyte 아키텍처는 긴 시퀀스 모델링을 위해 Transformer에 세 가지 주요 개선 사항을 적용했습니다. self-attention의 2차 비용인 반면 Megabyte는 긴 시퀀스를 두 개의 짧은 시퀀스로 분해하는데, 이는 긴 시퀀스의 경우에도 여전히 다루기 쉽습니다.
- 패치 피드포워드 레이어(Per-patch Feedforward 레이어)
GPT-3 크기 모델에서는 FLOPS의 98% 이상이 위치 피드포워드 레이어를 계산하는 데 사용되며 Megabyte는 패치 레이어당 큰 피드포워드를 사용하여 동일한 비용으로 더 크고 성능이 뛰어난 모델을 얻을 수 있습니다. 패치 크기가 P인 경우 기본 변환기는 m개의 매개변수가 있는 동일한 피드포워드 레이어를 P번 사용하고 Megabyte는 동일한 비용으로 mP 매개변수가 있는 레이어를 한 번 사용할 수 있습니다.
- 디코딩의 병렬성
각 시간 단계의 입력은 이전 시간 단계의 출력이고 패치는 병렬로 생성되기 때문에 Transformer는 생성 중에 모든 계산을 직렬로 수행해야 합니다. 메가바이트는 더 큰 계산을 허용한다고 말했습니다. 빌드 프로세스의 병렬성.
예를 들어, 1.5B 매개변수가 있는 메가바이트 모델은 표준 350MTransformer보다 40% 더 빠르게 시퀀스를 생성하는 동시에 동일한 양의 계산을 사용하여 훈련할 때 복잡성을 개선합니다.
Megabyte는 다른 모델보다 훨씬 뛰어난 성능을 발휘하며 하위 단어로 훈련된 sota 모델과 경쟁력 있는 결과를 제공합니다.
이에 비해 OpenAI의 GPT-4는 32,000개의 토큰 제한이 있고 Anthropic의 Claude는 100,000개의 토큰 제한이 있습니다.
또한 계산 효율성 측면에서 고정된 모델 크기 및 시퀀스 길이 범위 내에서 Megabyte는 동일한 크기의 Transformer 및 Linear Transformer보다 적은 토큰을 사용하므로 동일한 계산 비용으로 더 큰 모델을 사용할 수 있습니다.
이러한 개선 사항을 통해 동일한 컴퓨팅 예산으로 더 크고 성능이 뛰어난 모델을 교육하고 매우 긴 시퀀스로 확장하며 배포 중에 빌드 속도를 높일 수 있습니다.
AI 군비 경쟁이 본격화되면서 모델 성능은 점점 더 강해지고 매개변수도 점점 높아지고 있습니다.
GPT-3.5는 175B 매개변수로 훈련되었지만 일부에서는 더 강력한 GPT-4가 1조 개의 매개변수로 훈련되었다고 추측합니다.
OpenAI CEO인 Sam Altman도 최근 전략 변경을 제안했습니다. 그는 회사가 거대 모델의 훈련을 포기하고 다른 성능 최적화에 집중하는 것을 고려하고 있다고 말했습니다.
그는 AI 모델의 미래를 iPhone 칩과 동일시하지만 대부분의 소비자는 원래 기술 사양에 대해 전혀 모릅니다.
Meta 연구자들은 혁신적인 아키텍처가 적절한 시기에 나온다고 믿지만, 최적화할 수 있는 다른 방법도 있음을 인정합니다.
예를 들어 패칭 기술을 사용하는 보다 효율적인 인코더 모델, 시퀀스를 더 작은 블록으로 분해하고 시퀀스를 압축된 토큰으로 전처리하는 디코딩 모델 등이 있으며 기존 Transformer 아키텍처의 기능을 다음으로 확장할 수 있습니다. 새로운 세대의 모델을 구축하십시오.
전 Tesla AI 디렉터인 Andrej Karpathy도 트위터에 다음과 같이 글을 써서 이 논문에 무게를 두었습니다.
이것은 매우 유망하며 모든 사람들은 대규모 모델에서 토큰화를 버리고 지나치게 긴 바이트 시퀀스의 필요성을 제거할 수 있기를 바라고 있습니다.
위 내용은 트랜스포머보다 40% 빠르다! Meta, 컴퓨팅 전력 손실 문제를 해결하기 위해 새로운 Megabyte 모델 출시의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

표적 탐지는 자율주행 시스템에서 상대적으로 성숙한 문제이며, 그 중 보행자 탐지는 가장 먼저 배포되는 알고리즘 중 하나입니다. 대부분의 논문에서 매우 포괄적인 연구가 수행되었습니다. 그러나 서라운드 뷰를 위한 어안 카메라를 사용한 거리 인식은 상대적으로 덜 연구되었습니다. 큰 방사형 왜곡으로 인해 표준 경계 상자 표현은 어안 카메라에서 구현하기 어렵습니다. 위의 설명을 완화하기 위해 확장된 경계 상자, 타원 및 일반 다각형 디자인을 극/각 표현으로 탐색하고 인스턴스 분할 mIOU 메트릭을 정의하여 이러한 표현을 분석합니다. 제안된 다각형 형태의 모델 fisheyeDetNet은 다른 모델보다 성능이 뛰어나며 동시에 자율 주행을 위한 Valeo fisheye 카메라 데이터 세트에서 49.5% mAP를 달성합니다.

FP8 이하의 부동 소수점 수량화 정밀도는 더 이상 H100의 "특허"가 아닙니다! Lao Huang은 모든 사람이 INT8/INT4를 사용하기를 원했고 Microsoft DeepSpeed 팀은 NVIDIA의 공식 지원 없이 A100에서 FP6을 실행하기 시작했습니다. 테스트 결과에 따르면 A100에 대한 새로운 방법 TC-FPx의 FP6 양자화는 INT4에 가깝거나 때로는 더 빠르며 후자보다 정확도가 더 높은 것으로 나타났습니다. 또한 오픈 소스로 제공되고 DeepSpeed와 같은 딥 러닝 추론 프레임워크에 통합된 엔드투엔드 대규모 모델 지원도 있습니다. 이 결과는 대형 모델 가속화에도 즉각적인 영향을 미칩니다. 이 프레임워크에서는 단일 카드를 사용하여 Llama를 실행하면 처리량이 듀얼 카드보다 2.65배 더 높습니다. 하나
