이름에서 알 수 있듯이 B+ 트리 구조의 인덱스는 일반적인 상황에서 InnoDb 엔진에서 생성되는 일반 인덱스는 B+ 구조를 갖습니다.
B+ 트리 인덱스는 다음과 같습니다.
기본 키를 정의할 때 기본 키에 자동으로 추가되는 인덱스는 클러스터형 인덱스라고도 합니다.
Mysql에서는 구성요소를 사용하여 B+ 트리 구조를 구성합니다. 그림에 표시된 것처럼 각 리프 노드는 기본 키 및 기타 관련 데이터에 해당합니다.
테이블 생성 시 기본 키를 정의하지 않으면 MySQL은 자동으로 기본 키와 해당 인덱스를 생성합니다. 기본 키 이름은 rowId
rowId
辅助索引,也称为二级索引,是指对于非主键列column创建的索引。同样的,Mysql会为这个索引创建一个B+树,树的叶子节点除了包含这个列column的值以外,就只包含这个列所在行的主键值,这样通过列的索引就可以查到叶子节点,然后叶子节点中的主键信息再从主键的索引中搜索,最终得到一整行的数据。
通过二级索引找到主键,再从主键得到一整行数据的行为叫做回表。
聚合索引可以说是二级索引的一种特殊情况。一般二级索引都是只对一个非主键的列添加索引,而聚合索引则是一次性对多个列同时添加索引。
一般的二级索引用这样的语句创建:
CREATE INDEX order_name_index on t_order(order_name);
复合索引则是这样创建:
CREATE INDEX order_name_and_order_type_index on t_order(order_name, order_type);
对于复合索引,Mysql会也会创建一个B+树,但因为是多个列的索引,所以B+树的排序规则比较特殊,是遵循最左原则。下面会讲到什么是最左原则。
之后叶子节点包含的信息有多个,一个是作为索引的各个列的值,另一个就是主键的值。
所谓的最左原则是,B+树的排序规则是根据索引定义时,定义的语句中的列名从左到右进行排序。
比如定义语句如下:
CREATE INDEX joint_index on t_order(order_name, order_type, submit_time);
那排序规则是先排order_name
,如果order_name
相同,再排order_type
,最后排submit_time
。
那当我们查询时,根据定义时列的顺序从左至右,where
子句或者order by
等子句应该尽量先从order_name
开始,然后以此类推。
比如说,我们已经定义了上面的三个列组成的复合索引,那查询或者排序的时候尽量先order_name
,再order_type
,最后submit_time
。
select * from t_order where order_name = 'order1' and order_type = 1 and submit_time = str_to_date('2022-08-02 00:52:26', '%Y-%m-%d %T')
原因很简单,因为联合索引的排序规则是先排order_name
,如果order_name
相同,再排order_type
,最后排submit_time
。所以只有查询排序时也遵循这个规则,我们才能用上索引。
如果我们不完全遵守最左原则,比如查询排序只排两个列,忽略中间那个order by order_name, submit_time
。那这个时候Mysql会有智能化的处理,他会自己判断是用索引快还是不用索引快。
尽量使用到组成联合索引的列,并且保证顺序。可以通过查询索引查看列的顺序。查看sql_in_index
show index from t_order;
查询返回的字段尽量就只返回组成联合索引的列和主键,不要返回其它的列,以免造成回表。
这应该容易理解,因为联合索引的B+树的叶子节点就只包含主键和组成联合索引的列的值,如果返回的字段就这几列,那在一个B+树种查询就完事了。如果还要返回其它的列的话,就又要去主键的索引中查找,有回表操作。
一般数据库都会用B+树索引查询数据,但是当数据库使用一段时间后,InnoDB 会记录一些使用频率较高的热数据,然后为这些热数据建立哈希结构的索引,这就是哈希索引的应用场景。
这个索引在Mysql 5.7开始默认开启。
使用语句:
show engine innodb status;
其中的status
------------------------------------- INSERT BUFFER AND ADAPTIVE HASH INDEX ------------------------------------- Ibuf: size 1, free list len 0, seg size 2, 0 merges merged operations: insert 0, delete mark 0, delete 0 discarded operations: insert 0, delete mark 0, delete 0 Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 5 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 1 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 1 buffer(s) Hash table size 34679, node heap has 1 buffer(s) -- 哈希索引的命中率,可根据这个来决定是否使用哈希索引 0.00 hash searches/s, 0.00 non-hash searches/s ---
select count(distinct id)/count(*) form t_table;
SELECT COUNT(DISTINCT LEFT(order_note,3))/COUNT(*) AS sel3, COUNT(DISTINCT LEFT(order_note,4))/COUNT(*)AS sel4, COUNT(DISTINCT LEFT(order_note,5))/COUNT(*) AS sel5, COUNT(DISTINCT LEFT(order_note, 6))/COUNT(*) As sel6, COUNT(DISTINCT LEFT(order_note, 7))/COUNT(*) As sel7, COUNT(DISTINCT LEFT(order_note, 8))/COUNT(*) As sel8, COUNT(DISTINCT LEFT(order_note, 9))/COUNT(*) As sel9, COUNT(DISTINCT LEFT(order_note, 10))/COUNT(*) As sel10, COUNT(DISTINCT LEFT(order_note, 11))/COUNT(*) As sel11, COUNT(DISTINCT LEFT(order_note, 12))/COUNT(*) As sel12, COUNT(DISTINCT LEFT(order_note, 13))/COUNT(*) As sel13, COUNT(DISTINCT LEFT(order_note, 14))/COUNT(*) As sel14, COUNT(DISTINCT LEFT(order_note, 15))/COUNT(*) As sel15, COUNT(DISTINCT order_note)/COUNT(*) As total FROM order_exp;
order_name
을 먼저 정렬하는 것이고, order_name
이 동일하고 order_type< /code>을 정렬하면 마지막 행은 <code>submit_time
입니다. 🎜🎜그런 다음 쿼리할 때 정의에 따라 왼쪽에서 오른쪽으로 열의 순서에 따라 where
절 또는 order by
및 기타 절이 시작되도록 시도해야 합니다. order_name
Start 등으로. 🎜🎜예를 들어, 위의 세 열로 구성된 복합 인덱스를 정의했습니다. 쿼리하거나 정렬할 때 먼저 order_name
을 시도한 다음 order_type
을 시도하고 마지막으로 를 시도합니다. submit_time
. 🎜alter table order_exp add key(order_note(13));
order_name
을 먼저 정렬하고 order_name
이 동일하면 order_type<을 정렬하는 것이기 때문입니다. /code>, 마지막으로 < code>submit_time
입니다. 따라서 쿼리 정렬 시 이 규칙을 준수해야만 인덱스를 사용할 수 있습니다. 🎜🎜예를 들어, 가장 왼쪽 원칙을 완전히 준수하지 않으면 쿼리 정렬은 가운데 order by order_name, submit_time
을 무시하고 두 개의 열만 정렬합니다. 이때 Mysql은 지능적인 처리 기능을 갖게 되며 인덱스를 사용하는 것이 더 빠른지 여부를 판단하게 됩니다. 🎜CREATE TABLE customer ( cno INT, lname VARCHAR (10), fname VARCHAR (10), sex INT, weight INT, city VARCHAR (10) ); CREATE INDEX idx_cust ON customer (city, lname, fname, cno);
select cno,fname from customer where lname='xx' and city ='yy' order by fname;
상태
에는 해시 인덱스를 비롯한 많은 정보가 포함되어 있습니다. 정보를 편집기에 복사하여 봅니다. 이 섹션은 해시 인덱스 정보입니다. 🎜------------------------------------- INSERT BUFFER AND ADAPTIVE HASH INDEX ------------------------------------- Ibuf: size 1, free list len 0, seg size 2, 0 merges merged operations: insert 0, delete mark 0, delete 0 discarded operations: insert 0, delete mark 0, delete 0 Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 5 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 1 buffer(s) Hash table size 34679, node heap has 0 buffer(s) Hash table size 34679, node heap has 1 buffer(s) Hash table size 34679, node heap has 1 buffer(s) -- 哈希索引的命中率,可根据这个来决定是否使用哈希索引 0.00 hash searches/s, 0.00 non-hash searches/s ---
因为B+树也是占用空间的,所以在固定空间中,如果列的类型占用的空间越小,那我们一次就能读取更多的B+树节点,这样自然就加快了效率。
离散性是指数据的值重复的程度高不高,假如有N条数据的话,那离散性就可以用数值表示,范围是1/N 到 1。
比如说某个列在数据库中有下面几条数据(1, 2, 3, 4, 5, 5, 3),其中5和3都有重复,去重后应该是(1, 2, 3, 4, 5)。我们将去重后的条数除以总条数就得到离散性。这里是5/7。列中重复数据较多时,对应的数值较小,而重复数据较少时,数值相应较大。
如果一个列的数据的重复性越低,那么这个列就越适合加索引。
因为索引是需要起到筛选的作用。比如我们有个where
条件是where id = 1
,如果数据重复性较高,那可能根据索引会返回100条数据,然后我们在根据其他where
条件在100条数据中再筛选。
如果数据重复性较低,那可能就只返回1条数据,那之后的运算量明显小得多。
所以一个列的数据离散性越高,那这个列越适合添加索引。
我们可以用下面的语句得到某个列的离散性程度。
select count(distinct id)/count(*) form t_table;
前缀索引和后缀索引:
有些列的值比较长,比如一些备注日志信息也会记录在数据库当中,这类信息的长度往往比较长,如果我们需要对这类列加索引,那索引并不是索引字符串的全部长度。这时候我们就可以建立前缀索引,即对字符串的前面几位建立索引。
所以前缀索引就是建立范围更小索引,选择一个好前缀位数就能有一个更好的查询效率。
不过有一些缺点,就是这类索引无法应用到order by
和group
语句上。
Mysql没有后缀索引,如果非要实现后缀索引,那在数据存储时我们应该将数据反转,这样就能用前缀索引达到后缀索引的效果。后缀索引的一个经典应用就是邮箱,快速查询某种类型的邮箱。
选择前缀索引的位数:
这里的逻辑和列的离散性类似,我们需要看看字符串的前面几位的子字符串的离散性如何。比如对于下面的表,内容是电影票的相关信息,我们需要对order_note
建立前缀索引。
来比较一下各个位的子字符串的离散性。
SELECT COUNT(DISTINCT LEFT(order_note,3))/COUNT(*) AS sel3, COUNT(DISTINCT LEFT(order_note,4))/COUNT(*)AS sel4, COUNT(DISTINCT LEFT(order_note,5))/COUNT(*) AS sel5, COUNT(DISTINCT LEFT(order_note, 6))/COUNT(*) As sel6, COUNT(DISTINCT LEFT(order_note, 7))/COUNT(*) As sel7, COUNT(DISTINCT LEFT(order_note, 8))/COUNT(*) As sel8, COUNT(DISTINCT LEFT(order_note, 9))/COUNT(*) As sel9, COUNT(DISTINCT LEFT(order_note, 10))/COUNT(*) As sel10, COUNT(DISTINCT LEFT(order_note, 11))/COUNT(*) As sel11, COUNT(DISTINCT LEFT(order_note, 12))/COUNT(*) As sel12, COUNT(DISTINCT LEFT(order_note, 13))/COUNT(*) As sel13, COUNT(DISTINCT LEFT(order_note, 14))/COUNT(*) As sel14, COUNT(DISTINCT LEFT(order_note, 15))/COUNT(*) As sel15, COUNT(DISTINCT order_note)/COUNT(*) As total FROM order_exp;
![在这里插入图片描述](https://img-blog.csdnimg.cn/33a12fadd99944098e91f883d6bfaa2f.png #pic_center =x80)
可以看出,前面几位的子字符串的离散程度较低,后面sel13
开始就比较高,那我们可以根据实际情况,建立13~15位的前缀索引。
建立前缀索引SQL语句:
alter table order_exp add key(order_note(13));
这个理由很简单,不解释了。
原因很简单,查询时根据定义复合索引时的列的顺序来查询的,离散性高的列放在前面的话,就能更早的将更多的数据排除在外。
三星索引是一种策略。有三种条件,满足一条则索引获得一颗星,三颗星则是很好的索引。
三条策略分别是
索引将相关记录放在一起。
意思是查询需要的数据在索引树的叶子节点中连续或者足够靠近。举个例子,下面是某个索引的B+树。查询所需数据仅在叶节点的前两个范围内,即0000至a。这很明显,后面的片我们就没必要再去查询了,这无疑增加了效率。当所需数据分布在每个片上时,查询次数就会显著增加。
所以查询需要的数据在叶子节点上越连续,越窄就越好。
索引中的数据顺序与查找中的数据排序一致。
这容易理解,讲解联合索引中说过,B+树的排序顺序和索引中的数据一样,所以查询时的where
的数据顺序越贴近索引中的顺序,就越能更好地利用B+树。
索引的列包含查询中的所有列。
这个可以避免回文操作,不多解释。
三星索引的权重:
一般来说第三个策略权重占到50%,之后是第一个策略27%, 第二个策略23%。
三星索引实例:
CREATE TABLE customer ( cno INT, lname VARCHAR (10), fname VARCHAR (10), sex INT, weight INT, city VARCHAR (10) ); CREATE INDEX idx_cust ON customer (city, lname, fname, cno);
我们创建以上的索引,那么对于下面的查询语句,这个索引就是三星索引。
select cno,fname from customer where lname='xx' and city ='yy' order by fname;
首先,查询条件中有lname=’xx’ and city =’yy’
,这条件让我们这需要在lname=’xx’ and city =’yy’
的那一片B+树的叶子节点中查询,让我们的查询变窄了很多,并且这部分的数据是连续的,因为B+树是先根据city
排序,再根据lname
查询。
另外,因为已经锁定lname=’xx’ and city =’yy’
,所以这部分的数据是根据fname和cno
排序。查询语句正好是根据`fname```排序,所以第二点也满足。
最后是查询的结果都包含正在索引中,不会有回文,第三点也满足,所以这个索引是三星索引。
위 내용은 MySql 인덱스를 만드는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!