Python의 데이터 전처리 기술이란 무엇입니까?
Python은 일반적으로 사용되는 프로그래밍 언어로 다양한 데이터를 처리하고 분석할 수 있습니다. 데이터 전처리는 데이터 분석에서 매우 중요하고 필요한 단계입니다. 여기에는 데이터 정리, 특징 추출, 데이터 변환, 데이터 표준화 등의 단계가 포함됩니다. 전처리의 목적은 데이터의 품질과 분석성을 향상시키는 것입니다. Python에서 사용할 수 있는 많은 데이터 전처리 기술과 도구가 아래에 소개되어 있습니다.
- 데이터 정리
데이터 정리 단계에서는 원본 데이터의 누락된 값, 중복된 값, 이상치, 유효하지 않은 값 등 일부 문제를 처리해야 합니다. Python에서 pandas는 데이터를 조작하는 데 유용한 많은 기능을 제공하는 매우 일반적으로 사용되는 데이터 처리 라이브러리입니다. 예를 들어, pandas의 dropna() 함수는 누락된 값을 삭제할 수 있고, Duplicated() 함수는 중복 값을 감지하고 삭제할 수 있으며, isin() 함수는 유효하지 않은 값을 감지하고 삭제할 수 있습니다.
- 특징 추출
특징 추출은 원시 데이터를 분석에 사용할 수 있는 특징 벡터로 변환하는 프로세스입니다. 이를 통해 데이터에서 특징과 패턴을 발견할 수 있습니다. Python에는 수학적 원리를 기반으로 하는 PCA(Principal Component Analysis), LDA(Linear Discriminant Analysis), One-Hot Encoding, TF-IDF 등 일반적으로 사용되는 특징 추출 방법이 많이 있습니다. 특징 추출은 scikit-learn과 같은 툴킷에서 제공되는 기능을 사용하여 수행할 수 있습니다.
- 데이터 변환
데이터 변환은 원시 데이터를 분석에 사용할 수 있는 형식으로 변환하는 프로세스입니다. Python에는 데이터를 숫자, 이진 또는 텍스트 데이터로 변환하는 등 일반적으로 사용되는 데이터 변환 방법이 많이 있습니다. pandas의 to_numeric() 함수는 데이터를 숫자 유형으로 변환할 수 있고, label_encoder() 함수는 데이터를 바이너리 유형으로 변환할 수 있으며, to_categorical() 함수는 데이터를 텍스트 유형 데이터로 변환할 수 있습니다.
- 데이터 표준화
데이터 표준화는 서로 다른 데이터를 비교할 수 있도록 통합된 방식으로 확장하는 프로세스입니다. Python에는 정규화, 최대-최소 정규화, 정규화 등과 같이 일반적으로 사용되는 데이터 표준화 방법이 많이 있습니다.
요약하자면, Python에는 일반적으로 사용되는 데이터 전처리 기술과 도구가 많이 있습니다. 다양한 요구 사항과 데이터 유형에 따라 적절한 방법과 도구를 유연하게 선택할 수 있으므로 데이터의 품질과 분석 가능성이 향상됩니다.
위 내용은 Python의 데이터 전처리 기술이란 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

해시 값으로 저장되기 때문에 MongoDB 비밀번호를 Navicat을 통해 직접 보는 것은 불가능합니다. 분실 된 비밀번호 검색 방법 : 1. 비밀번호 재설정; 2. 구성 파일 확인 (해시 값이 포함될 수 있음); 3. 코드를 점검하십시오 (암호 하드 코드 메일).

데이터 전문가는 다양한 소스에서 많은 양의 데이터를 처리해야합니다. 이것은 데이터 관리 및 분석에 어려움을 겪을 수 있습니다. 다행히도 AWS Glue와 Amazon Athena의 두 가지 AWS 서비스가 도움이 될 수 있습니다.

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

질문 : Redis 서버 버전을 보는 방법은 무엇입니까? 명령 줄 도구 Redis-Cli를 사용하여 연결된 서버의 버전을보십시오. 정보 서버 명령을 사용하여 서버의 내부 버전을보고 정보를 구문 분석하고 반환해야합니다. 클러스터 환경에서 각 노드의 버전 일관성을 확인하고 스크립트를 사용하여 자동으로 확인할 수 있습니다. 스크립트를 사용하여 Python 스크립트와 연결 및 인쇄 버전 정보와 같은보기 버전을 자동화하십시오.

Navicat의 비밀번호 보안은 대칭 암호화, 암호 강도 및 보안 측정의 조합에 의존합니다. 특정 측정에는 다음이 포함됩니다. SSL 연결 사용 (데이터베이스 서버가 인증서를 지원하고 올바르게 구성하는 경우), 정기적으로 Navicat을 업데이트하고보다 안전한 방법 (예 : SSH 터널), 액세스 권한 제한 및 가장 중요한 것은 암호를 기록하지 않습니다.
