목차
정렬 정보
새로운 알고리즘 탐색: 조립 지침
AlphaGo의 방법을 사용하여 최고의 알고리즘 찾기
더 빠른 정렬 알고리즘을 발견했습니다.
"교환과 복사 행위", 신의 손이 다시 나타난다?
확장 능력 테스트: "정렬"에서 "해시"까지
결론
기술 주변기기 일체 포함 AI는 정렬 알고리즘을 70% 더 빠르게 다시 작성합니다. DeepMind AlphaDev는 매일 수조 건의 라이브러리 업데이트를 호출하여 컴퓨팅 기반을 혁신합니다.

AI는 정렬 알고리즘을 70% 더 빠르게 다시 작성합니다. DeepMind AlphaDev는 매일 수조 건의 라이브러리 업데이트를 호출하여 컴퓨팅 기반을 혁신합니다.

Jun 08, 2023 pm 11:05 PM
ai 연산

"교체 및 복사 이동을 통해 AlphaDev는 한 단계를 건너뛰고 잘못된 것처럼 보이지만 실제로는 지름길입니다." 이 전례 없고 반직관적인 아이디어는 사람들에게 2016년 봄을 상기시키지 않을 수 없습니다.

7년 전 AlphaGo는 바둑에서 인간 세계 챔피언을 이겼고 이제 AI는 우리에게 프로그래밍에 대한 또 다른 교훈을 가르쳐주었습니다.

오늘 아침 일찍, Google DeepMind CEO Hassabis의 두 문장이 컴퓨터 분야를 충격에 빠뜨렸습니다. "AlphaDev는 새롭고 더 빠른 정렬 알고리즘을 발견했으며 우리는 개발자가 사용할 수 있도록 이를 기본 C++ 라이브러리에 오픈 소스로 제공했습니다. 이것은 단지 코드 효율성 향상을 위한 AI 발전의 시작 이번에 Google DeepMind의 새로운 강화 학습 시스템인 AlphaDev는 이전보다 더 빠른 해싱 알고리즘을 발견했으며, AI의 결과가 이제 LLVM 표준 C++에 통합되었습니다. 라이브러리 Abseil 및 오픈 소스.

이 결과가 얼마나 중요합니까? AlphaDev의 주요 저자 중 한 명이자 Google DeepMind의 연구 과학자인 Daniel J. Mankowitz는 "우리가 발견한 정렬 및 해싱 알고리즘은 전 세계적으로 매일 수조 번 호출되는 것으로 추정됩니다."라고 말했습니다. 알고리즘 수준에서 세상의 속도를 높이세요. AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

이러한 알고리즘은 LLVM libc++ 정렬 라이브러리를 개선하여 더 짧은 시퀀스의 경우 70% 더 빠르고 요소가 250,000개가 넘는 시퀀스의 경우 약 1.7% 더 빠릅니다. Google DeepMind는 이것이 시퀀싱 라이브러리의 이 부분에 대한 첫 번째 변경이라고 말합니다. 이제 AI는 사람들이 코드를 작성하는 데 도움을 줄 뿐만 아니라 더 나은 코드를 작성하는 데도 도움이 되는 것 같습니다.

최신 블로그에서 새로운 시스템의 저자들이 AlphaDev를 자세히 소개했습니다.

새로운 알고리즘은 컴퓨팅의 기반을 바꿀 것입니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了디지털 사회는 컴퓨팅과 에너지에 대한 수요 증가를 주도합니다. 지난 50년 동안 디지털 시대는 수요를 따라가기 위해 하드웨어의 개선에 의존해 왔습니다. 그러나 마이크로칩이 물리적 한계에 가까워짐에 따라 마이크로칩에서 실행되는 코드를 개선하는 것이 중요해졌습니다. 이는 매일 수조 번 실행되는 코드에 포함된 알고리즘에 특히 중요합니다.

Google DeepMind의 이번 연구는 "Nature"에 관련 논문이 게재되었습니다. AlphaDev는 강화 학습을 사용하여 과학자와 엔지니어가 수십 년 동안 연마한 것보다 더 뛰어난 알고리즘을 발견하는 AI 시스템입니다. 결과.

논문 주소: https://www.nature.com/articles/s41586-023-06004-9

일반적으로 AlphaDev는 더 빠른 정렬 알고리즘을 발견했습니다. 매일 수십억 명의 사람들이 이러한 알고리즘을 사용하지만 개선의 여지가 있다는 것을 깨닫는 사람은 아무도 없습니다. 정렬 알고리즘은 온라인 검색 결과, 소셜 게시물 정렬, 컴퓨터 및 휴대폰에서의 다양한 데이터 처리에 이르기까지 광범위한 응용 분야에 사용되며 모두 정렬 알고리즘과 분리될 수 없습니다. AI를 사용하여 더 나은 알고리즘을 생성하면 인간이 컴퓨터를 프로그래밍하는 방식이 바뀌고 점점 더 디지털화되는 사회에 큰 영향을 미칠 것입니다.

주요 C++ 라이브러리에 새로운 정렬 알고리즘을 오픈 소스화함으로써 전 세계 수백만 명의 개발자와 기업이 이제 클라우드 컴퓨팅, 온라인 쇼핑, 공급망 관리 등 다양한 산업 분야의 AI 애플리케이션에서 이를 사용할 수 있습니다. . 이는 10여년 만에 순위 라이브러리에 대한 첫 번째 변경 사항이며, 강화 학습으로 설계된 알고리즘이 라이브러리에 추가된 것은 처음입니다. 이는 인공 지능을 사용하여 전 세계의 코드를 점진적으로 최적화하는 데 있어 중요한 이정표라고 생각하세요.

정렬 정보

정렬 알고리즘은 특정 작업을 특정 순서로 정렬하는 방법입니다. 예를 들어, 세 글자를 알파벳순으로 정렬하거나, 다섯 개의 숫자를 가장 큰 것부터 가장 작은 것 순으로 정렬하거나, 수백만 개의 레코드로 구성된 데이터베이스를 정렬할 수 있습니다.

이 알고리즘은 오랫동안 사용되어 왔으며 잘 발전했습니다. 주문의 최초 사례 중 하나는 학자들이 알렉산드리아 도서관 서가에 있는 수천 권의 책을 손으로 알파벳순으로 정리한 서기 2~3세기로 거슬러 올라갑니다. 산업 혁명의 도래와 함께 사람들이 분류하는 데 도움을 줄 수 있는 기계가 등장했습니다. 표 작성 기계는 1890년 미국 인구 조사 결과를 수집하는 데 사용된 천공 카드를 사용하여 정보를 저장했습니다.

1950년대 상업용 컴퓨터가 등장하면서 정렬 알고리즘을 위한 최초의 컴퓨터 과학 알고리즘이 개발되기 시작했습니다. 오늘날 엄청난 양의 온라인 데이터를 처리하기 위해 전 세계의 코드 기반에서 사용되는 다양한 정렬 기술과 알고리즘이 있습니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

알고리즘에 정렬되지 않은 일련의 숫자를 입력하고 정렬된 숫자를 출력합니다.

컴퓨터 과학자와 프로그래머가 수십 년간 연구한 결과, 현재의 정렬 알고리즘은 이미 너무 효율적이어서 추가 개선을 이루기가 어렵습니다. 이는 전력을 절약하거나 더 효율적인 수학을 위한 새로운 방법을 찾으려는 것과 다소 유사합니다. 이러한 알고리즘은 컴퓨터 과학의 초석이기도 합니다.

새로운 알고리즘 탐색: 조립 지침

AlphaDev는 기존 알고리즘을 기반으로 하는 대신 처음부터 더 빠른 알고리즘을 탐색하는 데에도 사용할 수 있습니다: 컴퓨터 조립 지침.

어셈블리 명령어를 사용하여 컴퓨터가 실행하는 바이너리 코드를 만들 수 있습니다. 개발자는 C++와 같은 고급 언어로 코드를 작성하지만 이를 컴퓨터가 이해할 수 있는 "저급" 어셈블리 명령으로 변환해야 합니다.

Google DeepMind는 이 수준에서 더 높은 수준의 프로그래밍 언어에서는 발견하기 어려울 수 있는 개선의 여지가 많다고 믿습니다. 이 수준에서는 컴퓨터의 저장 및 작동이 더 유연해집니다. 즉, 속도와 에너지 사용에 더 큰 영향을 줄 수 있는 개선 가능성이 더 많다는 의미입니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

코드는 일반적으로 C++와 같은 고급 프로그래밍 언어로 작성됩니다. 그런 다음 컴파일러는 이를 어셈블리 명령어라고 하는 하위 수준 CPU 명령어로 변환합니다. 어셈블러는 컴퓨터가 실행할 수 있도록 어셈블리 명령을 실행 가능한 기계어 코드로 변환합니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

그림 A: 최대 두 개의 요소를 정렬하는 C++ 알고리즘의 예 그림 B: 해당 어셈블리 표현.

AlphaGo의 방법을 사용하여 최고의 알고리즘 찾기

AlphaDev는 바둑, 체스, 체스 등의 게임에서 세계 챔피언을 물리친 강화 학습 모델인 Google DeepMind: AlphaZero의 이전 결과를 기반으로 합니다. 그리고 AlphaDev는 이 모델이 게임에서 과학적 과제로, 시뮬레이션에서 실제 응용 프로그램으로 어떻게 전환되는지 보여줍니다.

AlphaDev가 새로운 알고리즘을 발견하도록 훈련시키기 위해 팀은 정렬을 싱글 플레이어 "조립 게임"으로 전환했습니다. 각 단계에서 AlphaDev는 자신이 생성한 알고리즘과 CPU에 포함된 정보를 관찰한 후 알고리즘에 추가할 명령어를 선택하여 다음 동작을 수행합니다.

조립 게임은 매우 어렵습니다. 왜냐하면 AlphaDev는 정렬할 수 있고 현재 최고의 알고리즘보다 더 빠른 알고리즘을 찾기 위해 가능한 많은 명령어 조합을 통해 효율적으로 검색해야 하기 때문입니다. 가능한 명령 조합 수는 우주의 입자 수 또는 체스(10^120 게임) 및 바둑(10^700 게임)의 가능한 동작 조합 수와 유사하며 한 번의 잘못된 동작으로 인해 게임이 중단될 수 있습니다. 전체 알고리즘.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

사진 A: 조립 게임. 플레이어 AlphaDev는 시스템 st의 상태를 입력으로 받고 현재 생성된 알고리즘에 추가할 어셈블리 명령을 선택하여 체스를 플레이합니다. 그림 B: 보상 계산. 각 이동 후 결과 알고리즘에는 테스트 입력 시퀀스가 ​​제공됩니다. sort3의 경우 이는 세 요소 시퀀스의 모든 조합에 해당합니다. 그런 다음 알고리즘은 정렬 상황에 따라 정렬된 시퀀스의 예상 출력과 비교되는 출력을 생성합니다. 에이전트는 알고리즘 정확성과 지연 시간을 기준으로 보상을 받습니다.

한 번에 하나의 명령어씩 알고리즘을 구축할 때 AlphaDev는 알고리즘의 출력을 예상 결과와 비교하여 올바른지 확인합니다. 정렬 알고리즘의 경우 순서가 없는 숫자가 들어가고 올바르게 정렬된 숫자가 나온다는 의미입니다. 팀은 숫자를 정확하게 정렬한 것에 대해 AlphaDev에게 보상하고 정렬의 속도와 효율성을 제공하며 AlphaDev는 정확하고 빠른 프로그램을 발견하여 게임에서 승리합니다.

더 빠른 정렬 알고리즘을 발견했습니다.

AlphaDev는 LLVM libc++ 정렬 라이브러리를 개선한 새로운 정렬 알고리즘을 발견했습니다. 더 짧은 시퀀스의 경우 정렬 라이브러리가 70% 더 빠릅니다. 250,000개 이상의 요소 시퀀스의 경우, 속도는 약 1.7% 증가합니다.

그 중 Google DeepMind 팀은 3~5개 요소의 짧은 시퀀스 정렬 알고리즘을 개선하는 데 더 중점을 두고 있습니다. 이러한 알고리즘은 더 큰 정렬 기능의 일부로 여러 번 호출되는 경우가 많기 때문에 가장 널리 사용되며, 이러한 알고리즘을 개선하면 항목 수에 관계없이 전체 정렬 속도를 높일 수 있습니다.

새로운 정렬 알고리즘을 사람들에게 더욱 유용하게 만들기 위해 팀에서는 알고리즘을 역설계하고 개발자가 가장 많이 사용하는 프로그래밍 언어 중 하나인 C++로 번역했습니다.

현재 이러한 알고리즘은 LLVM libc++ 표준 정렬 라이브러리(https://reviews.llvm.org/D118029)에서 제공되며 전 세계 수백만 명의 개발자와 회사에서 사용됩니다.

"교환과 복사 행위", 신의 손이 다시 나타난다?

실제로 AlphaDev는 더 빠른 알고리즘뿐만 아니라 새로운 방법도 발견했습니다. 정렬 알고리즘은 적용될 때마다 명령을 저장하는 새로운 명령 시퀀스로 구성됩니다. 이러한 알고리즘은 매일 수조 번 사용되기 때문에 분명히 큰 영향을 미칩니다. 그들은 이것을 "AlphaDev 스왑 및 복사 작업"이라고 부릅니다.

이 참신한 접근 방식은 AlphaGo의 "37단계"를 연상시킵니다. 이는 구경꾼을 놀라게 하고 전설적인 바둑 선수 이세돌을 패배시키는 반직관적인 움직임입니다. 작업을 교환하고 복사함으로써 AlphaDev는 단계를 건너뛰고 실수처럼 보이지만 실제로는 지름길인 방식으로 항목을 연결합니다. 이는 독창적인 솔루션을 발견하고 컴퓨터 과학 알고리즘을 개선하는 방법에 대해 인간이 생각하는 방식에 도전하는 AlphaDev의 능력을 보여줍니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

왼쪽: min(A,B,C) 원래 sort3 구현, 오른쪽: AlphaDev 스왑 이동 - AlphaDev는 min(A,B)만 필요하다는 것을 발견했습니다.

AI重写排序算法,速度快70%:DeepMind AlphaDev革新计算基础,每天调用万亿次的库更新了

왼쪽: 8개 요소를 정렬하기 위한 대규모 정렬 알고리즘에서 max(B,min(A,C,D))를 사용한 원래 구현, 오른쪽: AlphaDev는 복사 작업을 사용할 때 max(B,min(A)만 발견했습니다. ,C))가 필요하다.

확장 능력 테스트: "정렬"에서 "해시"까지

더 빠른 정렬 알고리즘을 발견한 후 팀은 AlphaDev가 다른 컴퓨터 과학 알고리즘인 해싱을 일반화하고 개선할 수 있는지 테스트했습니다.

해시는 컴퓨팅에서 데이터를 검색, 저장 및 압축하는 데 사용되는 기본 알고리즘입니다. 특정 책을 찾기 위해 분류 시스템을 사용하는 사서와 마찬가지로 해싱 알고리즘은 사용자가 무엇을 찾고 있는지, 어디서 찾을 수 있는지 알 수 있도록 도와줍니다. 이러한 알고리즘은 특정 키(예: 사용자 이름 "Jane Doe")에 대한 데이터를 가져와 해시합니다. 즉, 원시 데이터를 고유한 문자열(예: 1234ghfty)로 변환하는 프로세스입니다. 컴퓨터는 모든 데이터를 검색하는 대신 이 해시를 사용하여 키와 관련된 데이터를 빠르게 검색합니다.

팀은 더 빠른 알고리즘을 발견하기 위해 데이터 구조에서 가장 일반적으로 사용되는 해싱 알고리즘 중 하나에 AlphaDev를 적용했습니다. 9~16바이트 범위의 해시 함수에 적용하면 AlphaDev는 알고리즘 속도가 30% 향상되는 것을 확인했습니다.

올해 AlphaDev의 새로운 해싱 알고리즘이 오픈 소스 Abseil 라이브러리에 출시되어 전 세계 수백만 명의 개발자가 사용할 수 있게 되었으며 현재는 하루에도 수조 번 정도 사용되고 있습니다.

오픈소스 주소: https://github.com/abseil/abseil-cpp/commit/74eee2aff683cc7dcd2dbaa69b2c654596d8024e

결론

구글 딥마인드는 ㅋㅋㅋ ​주변에서 사용 가능한 해시 알고리즘을 최적화하고 출시함으로써 개발자가 사용하는 AlphaDev는 실제 세계에 영향을 미치는 새로운 알고리즘을 일반화하고 발견하는 능력을 보여줍니다. AlphaDev는 전체 컴퓨팅 생태계를 최적화하고 사회의 이익을 위해 다른 문제를 해결하는 데 도움이 될 수 있는 범용 AI 도구를 개발하기 위한 한 단계로 볼 수 있습니다.

저수준 어셈블리 명령 공간에서의 최적화는 매우 강력하지만 AlphaDev는 알고리즘이 성장함에 따라 여전히 한계를 갖고 있으며 팀은 현재 C++와 같은 고급 언어에서 직접 알고리즘을 최적화하는 능력을 탐색하고 있습니다. 개발자에게 더 유용합니다.

교체 및 복사 작업과 같은 AlphaDev의 발견은 알고리즘을 개선할 수 있을 뿐만 아니라 새로운 솔루션을 찾을 수도 있음을 보여줍니다. 이러한 발견은 연구원과 개발자가 기본 알고리즘을 더욱 최적화하여 더욱 강력하고 지속 가능한 컴퓨팅 생태계를 만들 수 있는 기술과 방법을 개발하도록 영감을 줄 수 있습니다.

위 내용은 AI는 정렬 알고리즘을 70% 더 빠르게 다시 작성합니다. DeepMind AlphaDev는 매일 수조 건의 라이브러리 업데이트를 호출하여 컴퓨팅 기반을 혁신합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

vue.js의 객체로 문자열을 변환하는 데 어떤 방법이 사용됩니까? vue.js의 객체로 문자열을 변환하는 데 어떤 방법이 사용됩니까? Apr 07, 2025 pm 09:39 PM

표준 JSON 문자열의 경우 vue.js의 객체로 문자열을 변환 할 때 JSON.PARSE ()가 선호됩니다. 비표준 JSON 문자열의 경우, 정규 표현식을 사용하여 문자열을 처리하고 형식 또는 디코딩 된 URL 인코딩에 따라 방법을 줄일 수 있습니다. 문자열 형식에 따라 적절한 방법을 선택하고 버그를 피하기 위해 보안 및 인코딩 문제에주의를 기울이십시오.

설치 후 MySQL을 사용하는 방법 설치 후 MySQL을 사용하는 방법 Apr 08, 2025 am 11:48 AM

이 기사는 MySQL 데이터베이스의 작동을 소개합니다. 먼저 MySQLworkBench 또는 명령 줄 클라이언트와 같은 MySQL 클라이언트를 설치해야합니다. 1. MySQL-Uroot-P 명령을 사용하여 서버에 연결하고 루트 계정 암호로 로그인하십시오. 2. CreateABase를 사용하여 데이터베이스를 작성하고 데이터베이스를 선택하십시오. 3. CreateTable을 사용하여 테이블을 만들고 필드 및 데이터 유형을 정의하십시오. 4. InsertInto를 사용하여 데이터를 삽입하고 데이터를 쿼리하고 업데이트를 통해 데이터를 업데이트하고 DELETE를 통해 데이터를 삭제하십시오. 이러한 단계를 마스터하고 일반적인 문제를 처리하는 법을 배우고 데이터베이스 성능을 최적화하면 MySQL을 효율적으로 사용할 수 있습니다.

vue.js 문자열 유형 배열을 객체 배열로 변환하는 방법은 무엇입니까? vue.js 문자열 유형 배열을 객체 배열로 변환하는 방법은 무엇입니까? Apr 07, 2025 pm 09:36 PM

요약 : vue.js 문자열 배열을 객체 배열로 변환하는 다음 방법이 있습니다. 기본 메소드 : 정기적 인 형식의 데이터에 맞게 맵 함수를 사용하십시오. 고급 게임 플레이 : 정규 표현식을 사용하면 복잡한 형식을 처리 할 수 ​​있지만 신중하게 작성하고 고려해야합니다. 성능 최적화 : 많은 양의 데이터를 고려하면 비동기 작업 또는 효율적인 데이터 처리 라이브러리를 사용할 수 있습니다. 모범 사례 : 명확한 코드 스타일, 의미있는 변수 이름과 주석을 사용하여 코드를 간결하게 유지하십시오.

Vue Axios의 시간 초과를 설정하는 방법 Vue Axios의 시간 초과를 설정하는 방법 Apr 07, 2025 pm 10:03 PM

vue axios의 타임 아웃을 설정하려면 axios 인스턴스를 생성하고 시간 초과 옵션을 지정할 수 있습니다. 글로벌 설정에서 : vue.prototype. $ axios = axios.create ({timeout : 5000}); 단일 요청 : this. $ axios.get ( '/api/user', {timeout : 100000}).

Laravel 's geospatial : 대화식지도의 최적화 및 많은 양의 데이터 Laravel 's geospatial : 대화식지도의 최적화 및 많은 양의 데이터 Apr 08, 2025 pm 12:24 PM

7 백만 레코드를 효율적으로 처리하고 지리 공간 기술로 대화식지도를 만듭니다. 이 기사는 Laravel과 MySQL을 사용하여 7 백만 개 이상의 레코드를 효율적으로 처리하고 대화식지도 시각화로 변환하는 방법을 살펴 봅니다. 초기 챌린지 프로젝트 요구 사항 : MySQL 데이터베이스에서 7 백만 레코드를 사용하여 귀중한 통찰력을 추출합니다. 많은 사람들이 먼저 프로그래밍 언어를 고려하지만 데이터베이스 자체를 무시합니다. 요구 사항을 충족시킬 수 있습니까? 데이터 마이그레이션 또는 구조 조정이 필요합니까? MySQL이 큰 데이터로드를 견딜 수 있습니까? 예비 분석 : 주요 필터 및 속성을 식별해야합니다. 분석 후, 몇 가지 속성만이 솔루션과 관련이 있음이 밝혀졌습니다. 필터의 타당성을 확인하고 검색을 최적화하기위한 제한 사항을 설정했습니다. 도시를 기반으로 한지도 검색

MySQL을 해결하는 방법을 시작할 수 없습니다 MySQL을 해결하는 방법을 시작할 수 없습니다 Apr 08, 2025 pm 02:21 PM

MySQL 시작이 실패하는 데는 여러 가지 이유가 있으며 오류 로그를 확인하여 진단 할 수 있습니다. 일반적인 원인에는 포트 충돌 (포트 점유 체크 및 구성 수정), 권한 문제 (서비스 실행 사용자 권한 실행), 구성 파일 오류 (파라미터 설정 확인), 데이터 디렉토리 손상 (데이터 복원 또는 테이블 공간 재건), IBDATA 테이블 공간 문제 (IBDATA1 파일 확인), 플러그로드 (확인 오류 로그)가 포함됩니다. 문제를 해결할 때 오류 로그를 기반으로 문제를 분석하고 문제의 근본 원인을 찾고 문제를 방지하고 해결하기 위해 정기적으로 데이터를 백업하는 습관을 개발해야합니다.

MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 MySQL 설치 후 데이터베이스 성능을 최적화하는 방법 Apr 08, 2025 am 11:36 AM

MySQL 성능 최적화는 설치 구성, 인덱싱 및 쿼리 최적화, 모니터링 및 튜닝의 세 가지 측면에서 시작해야합니다. 1. 설치 후 innodb_buffer_pool_size 매개 변수와 같은 서버 구성에 따라 my.cnf 파일을 조정해야합니다. 2. 과도한 인덱스를 피하기 위해 적절한 색인을 작성하고 Execution 명령을 사용하여 실행 계획을 분석하는 것과 같은 쿼리 문을 최적화합니다. 3. MySQL의 자체 모니터링 도구 (showprocesslist, showstatus)를 사용하여 데이터베이스 건강을 모니터링하고 정기적으로 백업 및 데이터베이스를 구성하십시오. 이러한 단계를 지속적으로 최적화함으로써 MySQL 데이터베이스의 성능을 향상시킬 수 있습니다.

원격 선임 백엔드 엔지니어 (플랫폼)에는 원이 필요합니다 원격 선임 백엔드 엔지니어 (플랫폼)에는 원이 필요합니다 Apr 08, 2025 pm 12:27 PM

원격 선임 백엔드 엔지니어 구직 회사 : 원 위치 : 원격 사무실 직무 유형 : 전임 급여 : $ 130,000- $ 140,000 직무 설명 전체 소프트웨어 개발 라이프 사이클을 다루는 Circle Mobile 애플리케이션 및 공개 API 관련 기능의 연구 및 개발에 참여합니다. 주요 책임은 독립적으로 Rubyonrails를 기반으로 개발 작업을 완료하고 React/Redux/Relay 프론트 엔드 팀과 협력합니다. 웹 애플리케이션의 핵심 기능 및 개선을 구축하고 기능 설계 프로세스 전반에 걸쳐 설계자 및 리더십과 긴밀히 협력하십시오. 긍정적 인 개발 프로세스를 촉진하고 반복 속도를 우선시하십시오. 6 년 이상의 복잡한 웹 애플리케이션 백엔드가 필요합니다.

See all articles