백엔드 개발 파이썬 튜토리얼 Python의 FP-Growth 알고리즘에 대한 자세한 설명

Python의 FP-Growth 알고리즘에 대한 자세한 설명

Jun 09, 2023 pm 08:24 PM
python 연산 fp-growth

FP-Growth 알고리즘은 고전적인 빈발 패턴 마이닝 알고리즘으로, 데이터 세트에서 자주 함께 나타나는 항목의 컬렉션을 마이닝하는 데 매우 효율적인 알고리즘입니다. 이번 글에서는 FP-Growth 알고리즘의 원리와 구현 방법을 자세히 소개하겠습니다.

1. FP-Growth 알고리즘의 기본 원리

FP-Growth 알고리즘의 기본 아이디어는 데이터 세트의 빈발 항목 집합을 표현하기 위한 FP-Tree(빈번 항목 집합 트리)를 구축하고, 빈발 항목을 마이닝하는 것입니다. FP-Tree 세트에서. FP-Tree는 후보 빈발항목집합을 생성하지 않고도 빈발항목집합을 마이닝할 수 있는 효율적인 자료구조이다.

FP-Tree에는 루트 노드와 트리 노드라는 두 부분이 있습니다. 루트 노드에는 값이 없지만 트리 노드에는 항목 이름과 항목 발생 횟수가 포함됩니다. FP-Tree에는 동일한 노드를 가리키는 링크도 포함되어 있으며 이러한 링크를 "링크 포인터"라고 합니다.

FP-Growth 알고리즘의 프로세스는 두 부분으로 구성됩니다: FP-Tree 구축 및 빈발 항목 집합 채굴:

  1. FP-Tree 구축:

각 거래에 대해 비빈번 항목을 삭제하고 지원에 따라 빈도를 계산합니다. 빈번한 항목의 크기별로 정렬하여 빈번한 항목 집합을 가져옵니다.

각 트랜잭션을 탐색하여 각 트랜잭션의 빈발 항목 집합을 나타나는 순서대로 FP-Tree에 삽입합니다. 이미 노드가 있으면 개수를 늘립니다.

  1. 빈발 항목 집합 마이닝:

FP-Tree에서 빈발 항목 집합을 마이닝하는 방법은 다음과 같습니다.

FP-Tree의 맨 아래에서 시작하여 각 항목 집합의 조건 패턴 라이브러리를 찾습니다. 이 항목 집합을 포함하는 거래입니다. 이후 조건부 패턴 라이브러리에 대해 새로운 FP-Tree를 재귀적으로 구축하고 트리 내 빈발항목집합을 검색한다.

새로운 FP-Tree에서는 각 빈번 항목을 지지도에 따라 정렬하고 후보 집합을 구성한 후 재귀적으로 채굴합니다. 빈발항목집합을 모두 찾을 때까지 위 과정을 반복합니다.

2. FP-Growth 알고리즘 구현

FP-Growth 알고리즘 구현은 Python 프로그래밍 언어를 사용할 수 있습니다. 다음은 FP-Growth 알고리즘의 구현을 보여주는 간단한 예입니다.

먼저 데이터 세트를 정의합니다. 예:

dataset = [['v', 'a', 'p', 'e', 's'],
           ['b', 'a', 'k', 'e'],
           ['a', 'p', 'p', 'l', 'e', 's'],
           ['d', 'i', 'n', 'n', 'e', 'r']]
로그인 후 복사

그런 다음 주문된 항목 세트를 생성하는 함수를 작성합니다. 예:

def create_ordered_items(dataset):
    # 遍历数据集,统计每个项出现的次数
    item_dict = {}
    for trans in dataset:
        for item in trans:
            if item not in item_dict:
                item_dict[item] = 1
            else:
                item_dict[item] += 1

    # 生成有序项集
    ordered_items = [v[0] for v in sorted(item_dict.items(), key=lambda x: x[1], reverse=True)]
    return ordered_items
로그인 후 복사

그 중 create_ordered_items 함수는 개수에 따라 주문된 항목 세트를 얻는 데 사용됩니다. 항목의 발생.

다음으로 FP-Tree를 구축하는 함수를 작성하세요.

class TreeNode:
    def __init__(self, name, count, parent):
        self.name = name
        self.count = count
        self.parent = parent
        self.children = {}
        self.node_link = None

    def increase_count(self, count):
        self.count += count

def create_tree(dataset, min_support):
    # 生成有序项集
    ordered_items = create_ordered_items(dataset)

    # 建立根节点
    root_node = TreeNode('Null Set', 0, None)

    # 建立FP-Tree
    head_table = {}
    for trans in dataset:
        # 过滤非频繁项
        filtered_items = [item for item in trans if item in ordered_items]
        # 对每个事务中的项集按频繁项的支持度从大到小排序
        filtered_items.sort(key=lambda x: ordered_items.index(x))
        # 插入到FP-Tree中
        insert_tree(filtered_items, root_node, head_table)

    return root_node, head_table

def insert_tree(items, node, head_table):
    if items[0] in node.children:
        # 如果节点已存在,则增加其计数
        node.children[items[0]].increase_count(1)
    else:
        # 如果节点不存在,则插入新的节点
        new_node = TreeNode(items[0], 1, node)
        node.children[items[0]] = new_node
        # 更新链表中的指针
        if head_table.get(items[0], None) is None:
            head_table[items[0]] = new_node
        else:
            current_node = head_table[items[0]]
            while current_node.node_link is not None:
                current_node = current_node.node_link
            current_node.node_link = new_node

    if len(items) > 1:
        # 对剩余的项进行插入
        insert_tree(items[1:], node.children[items[0]], head_table)
로그인 후 복사

create_tree 함수는 FP-Tree를 구축하는 데 사용됩니다.

마지막으로 빈발 항목 집합을 마이닝하는 함수를 작성합니다.

def find_freq_items(head_table, prefix, freq_items, min_support):
    # 对头指针表中的每个项按照出现的次数从小到大排序
    sorted_items = [v[0] for v in sorted(head_table.items(), key=lambda x: x[1].count)]
    for item in sorted_items:
        # 将前缀加上该项,得到新的频繁项
        freq_set = prefix + [item]
        freq_count = head_table[item].count
        freq_items.append((freq_set, freq_count))
        # 构建该项的条件模式库
        cond_pat_base = get_cond_pat_base(head_table[item])
        # 递归地构建新的FP-Tree,并寻找频繁项集
        sub_head_table, sub_freq_items = create_tree(cond_pat_base, min_support)
        if sub_head_table is not None:
            find_freq_items(sub_head_table, freq_set, freq_items, min_support)

def get_cond_pat_base(tree_node):
    cond_pat_base = []
    while tree_node is not None:
        trans = []
        curr = tree_node.parent
        while curr.parent is not None:
            trans.append(curr.name)
            curr = curr.parent
        cond_pat_base.append(trans)
        tree_node = tree_node.node_link
    return cond_pat_base

def mine_fp_tree(dataset, min_support):
    freq_items = []
    # 构建FP-Tree
    root_node, head_table = create_tree(dataset, min_support)
    # 挖掘频繁项集
    find_freq_items(head_table, [], freq_items, min_support)
    return freq_items
로그인 후 복사

mine_fp_tree 함수는 빈발 항목 집합을 마이닝하는 데 사용됩니다.

3. 요약

FP-Growth 알고리즘은 효율적인 빈발 패턴 마이닝 알고리즘으로, FP-Tree를 구성함으로써 후보 빈발 항목 집합을 생성하지 않고도 빈발 항목 집합을 마이닝할 수 있습니다. Python은 FP-Growth 알고리즘을 구현하는 데 매우 적합한 프로그래밍 언어입니다. Python을 사용하면 이 알고리즘을 빠르게 구현하고 실제로 빈발 항목 집합을 마이닝하는 데 사용할 수 있습니다. 이 글이 FP-Growth 알고리즘의 원리와 구현 방법을 더 잘 이해하는 데 도움이 되기를 바랍니다.

위 내용은 Python의 FP-Growth 알고리즘에 대한 자세한 설명의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

vScode를 Mac에 사용할 수 있습니다 vScode를 Mac에 사용할 수 있습니다 Apr 15, 2025 pm 07:36 PM

VS 코드는 Mac에서 사용할 수 있습니다. 강력한 확장, GIT 통합, 터미널 및 디버거가 있으며 풍부한 설정 옵션도 제공합니다. 그러나 특히 대규모 프로젝트 또는 고도로 전문적인 개발의 경우 VS 코드는 성능 또는 기능 제한을 가질 수 있습니다.

See all articles