Tian Yuandong의 신작: Transformer 블랙박스의 첫 번째 레이어를 열면 주의 메커니즘이 그리 신비롭지 않습니다.
Transformer 아키텍처는 자연어 처리, 컴퓨터 비전, 음성, 다중 양식 등 다양한 분야를 휩쓸었습니다. 그러나 현재 실험 결과는 매우 인상적이며 Transformer의 작동 원리에 대한 관련 연구는 여전히 매우 제한적입니다. .
가장 큰 미스터리는 Transformer가 "단순 예측 손실"에만 의존하여 경사 훈련 역학에서 효율적인 표현을 도출할 수 있는 이유입니다.
최근 Tian Yuandong 박사는 수학적으로 엄격한 방식으로 1계층 Transformer(Self-Attention 계층과 디코더 계층)의 SGD 훈련 역학을 분석한 팀의 최신 연구 결과를 발표했습니다. 다음 토큰 예측 작업.
문서 링크: https://arxiv.org/abs/2305.16380
이 문서는 self-attention 레이어가 입력 토큰의 동적 프로세스를 결합하는 방법에 대한 블랙박스를 엽니다. 잠재적인 귀납적 편향의 본질을 드러냅니다.
구체적으로 위치 인코딩이 없고 긴 입력 시퀀스가 있으며 디코더 레이어가 self-attention 레이어보다 빠르게 학습한다는 가정 하에서 연구원들은 self-attention이 차별적 스캐닝 알고리즘 알고리즘임을 증명했습니다.
균등한 관심에서 시작하여 특정 다음 토큰을 예측하기 위해 모델은 점차적으로 다른 키 토큰에 초점을 맞추고 여러 다음 토큰 창에 나타나는 토큰에는 덜 주의를 기울입니다. 공통 토큰
다른 토큰의 경우, 모델은 훈련 세트의 키 토큰과 쿼리 토큰 간의 동시 발생 빈도가 낮은 순서에서 높은 순서에 따라 점차적으로 주의 가중치를 줄입니다.
흥미롭게도 이 프로세스는 승자 독식으로 이어지지는 않지만 2계층 학습 속도에 의해 제어되는 단계 전환으로 인해 속도가 느려지고 최종적으로 두 합성 모두에서 (거의) 고정 토큰 조합이 됩니다. 실제 데이터 이 역학도 검증되었습니다.
Tian Yuandong 박사는 메타 인공 지능 연구소의 연구원이자 연구 관리자이며 Go AI 프로젝트의 리더입니다. 그의 연구 방향은 심층 강화 학습과 게임에서의 응용, 심층 강화 학습입니다. 학습 모델. 그는 2005년과 2008년 상하이자오퉁대학교에서 학사 및 석사학위를 취득했고, 2013년에는 미국 카네기멜론대학교 로봇공학연구소에서 박사학위를 취득했다.
2013 International Conference on Computer Vision (ICCV) Marr Prize Honorable Mentions (Marr Prize Honorable Mentions) 및 ICML2021 Outstanding Paper Honorable Mention Award를 수상했습니다.
박사 학위를 졸업한 후, 연구 방향 선택, 박사 과정에 대한 생각과 경험을 정리한 "박사 학위 5년 요약" 시리즈를 출판했습니다. 독서 축적, 시간 관리, 업무 태도, 소득 및 지속 가능한 경력 개발.
1층 Transformer 공개
Transformer 아키텍처를 기반으로 한 사전 학습 모델에는 일반적으로 다음 단어 예측, 빈칸 채우기 등과 같은 매우 간단한 감독 작업만 포함되지만 매우 풍부한 기능을 제공할 수 있습니다. 정말 인상적인 다운스트림 작업에 대한 표현입니다.
이전 연구에서는 Transformer가 본질적으로 보편적 근사기라는 것이 입증되었지만 kNN, 커널 SVM, 다층 퍼셉트론 등과 같이 이전에 일반적으로 사용되는 기계 학습 모델은 실제로 보편적 근사기입니다. 이 이론으로는 설명할 수 없습니다. 이 두 가지 유형의 모델 사이에는 성능 차이가 큽니다.
연구원들은 Transformer의 훈련 역학, 즉 훈련 과정에서 학습 가능한 매개변수가 시간에 따라 어떻게 변하는지 이해하는 것이 중요하다고 믿습니다.
이 기사에서는 먼저 엄격한 수학적 정의를 사용하여 다음 토큰 예측(GPT 시리즈 모델에 일반적으로 사용되는 교육 패러다임)에 대한 위치 없는 코딩 Transformer 레이어를 사용하여 SGD의 교육 역학을 공식적으로 설명합니다.
레이어 1의 Transformer에는 Softmax self-attention 레이어와 다음 토큰을 예측하는 디코더 레이어가 포함되어 있습니다.
시퀀스가 길고 디코더가 self-attention 계층보다 빠르게 학습한다는 가정하에 훈련 중 self-attention의 동적 동작이 시연됩니다.
1. Bias
모델은 쿼리 토큰과 함께 많이 발생하는 키 토큰에 점차적으로 주의를 기울이고, 동시에 발생하는 토큰이 적은 토큰에는 주의를 기울입니다.
2. 차별적 편향
모델은 예측할 다음 토큰에만 나타나는 고유 토큰에 더 많은 관심을 기울이고 여러 다음 토큰 관심에 나타나는 공통 토큰에는 잃습니다.
이 두 가지 특성은 self-attention이 암묵적으로 차별적 스캐닝 알고리즘을 실행하고 귀납적 편향을 가지고 있음을 나타냅니다. 즉, 쿼리 토큰과 함께 자주 나타나는 고유한 기능에 편향됩니다.
비록 self-attention 레이어가 훈련 중에 더 희박해지는 경향이 있지만, 주파수 편차에서 알 수 있듯이 모델은 훈련 역학의 위상 전환으로 인해 붕괴되지 않습니다.
학습의 마지막 단계는 기울기가 0인 안장점으로 수렴되지 않고 주의가 천천히(예: 시간이 지남에 따라 대수적으로) 변화하고 매개변수가 동결되고 학습되는 영역으로 들어갑니다.
연구 결과는 단계 전환의 시작이 학습 속도에 의해 제어된다는 것을 추가로 보여줍니다. 학습 속도가 크면 희박한 주의 패턴이 생성되는 반면, 고정된 self-attention 학습 속도에서는 큰 디코더 학습 속도가 생성됩니다. 더 빠른 단계 전환과 집중적인 주의 패턴.
연구원들은 작업 스캔 및 스냅에서 발견한 SGD 역학을 다음과 같이 명명했습니다.
스캔 단계: Self-attention은 핵심 토큰, 즉 다르며 종종 다음 예측 토큰과 관련되는 토큰에 중점을 둡니다. 동시에 나타나면 다른 모든 토큰은 주의를 잃습니다.
스냅 단계: 주의가 거의 정지되었으며, 토큰 조합이 고정되었습니다.
이 현상은 간단한 실제 데이터 실험에서도 확인되었습니다. SGD를 사용하여 WikiText에서 훈련된 1계층 및 3계층 변환기의 가장 낮은 self-attention 계층을 관찰하면 다음과 같습니다. 학습 속도는 훈련 전반에 걸쳐 일정하게 유지되며 훈련 중 특정 시점에 주의가 멈추고 희박해진다는 사실을 발견했습니다.
위 내용은 Tian Yuandong의 신작: Transformer 블랙박스의 첫 번째 레이어를 열면 주의 메커니즘이 그리 신비롭지 않습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











CentOS 시스템에서 HDFS 구성 확인에 대한 완전한 안내서이 기사에서는 CentOS 시스템에서 HDF의 구성 및 실행 상태를 효과적으로 확인하는 방법을 안내합니다. 다음 단계는 HDF의 설정 및 작동을 완전히 이해하는 데 도움이됩니다. Hadoop 환경 변수 확인 : 먼저 Hadoop 환경 변수가 올바르게 설정되어 있는지 확인하십시오. 터미널에서 다음 명령을 실행하여 Hadoop이 올바르게 설치되고 구성되었는지 확인하십시오. Hadoopversion Check HDFS 구성 파일 : HDFS의 Core 구성 파일은/etc/hadoop/conf/directory에 있으며 Core-Site.xml 및 HDFS-Site.xml이 중요합니다. 사용

CentOS 종료 명령은 종료이며 구문은 종료 [옵션] 시간 [정보]입니다. 옵션은 다음과 같습니다. -H 시스템 중지 즉시 옵션; -P 종료 후 전원을 끕니다. -R 다시 시작; -대기 시간. 시간은 즉시 (현재), 분 (분) 또는 특정 시간 (HH : MM)으로 지정할 수 있습니다. 추가 정보는 시스템 메시지에 표시 될 수 있습니다.

CentOS 시스템 하에서 Gitlab의 백업 및 복구 정책 데이터 보안 및 복구 가능성을 보장하기 위해 CentOS의 Gitlab은 다양한 백업 방법을 제공합니다. 이 기사는 완전한 GITLAB 백업 및 복구 전략을 설정하는 데 도움이되는 몇 가지 일반적인 백업 방법, 구성 매개 변수 및 복구 프로세스를 자세히 소개합니다. 1. 수동 백업 gitlab-rakegitlab : 백업 : 명령을 작성하여 수동 백업을 실행하십시오. 이 명령은 gitlab 저장소, 데이터베이스, 사용자, 사용자 그룹, 키 및 권한과 같은 주요 정보를 백업합니다. 기본 백업 파일은/var/opt/gitlab/backups 디렉토리에 저장됩니다. /etc /gitlab을 수정할 수 있습니다

Centos에 MySQL을 설치하려면 다음 단계가 필요합니다. 적절한 MySQL Yum 소스 추가. mysql 서버를 설치하려면 yum install mysql-server 명령을 실행하십시오. mysql_secure_installation 명령을 사용하여 루트 사용자 비밀번호 설정과 같은 보안 설정을 작성하십시오. 필요에 따라 MySQL 구성 파일을 사용자 정의하십시오. MySQL 매개 변수를 조정하고 성능을 위해 데이터베이스를 최적화하십시오.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Centos 시스템에서 Gitlab 로그를보기위한 완전한 안내서이 기사에서는 메인 로그, 예외 로그 및 기타 관련 로그를 포함한 CentOS 시스템에서 다양한 Gitlab 로그를 보는 방법을 안내합니다. 로그 파일 경로는 Gitlab 버전 및 설치 방법에 따라 다를 수 있습니다. 다음 경로가 존재하지 않으면 GitLab 설치 디렉토리 및 구성 파일을 확인하십시오. 1. 기본 gitlab 로그보기 다음 명령을 사용하여 Gitlabrails 응용 프로그램의 기본 로그 파일을 보려면 다음 명령 : 명령 : sudocat/var/log/gitlab/gitlab-rails/production.log이 명령은 제품을 표시합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :
