백엔드 개발 파이썬 튜토리얼 Python 서버 프로그래밍: Scikit-learn을 사용한 기계 학습

Python 서버 프로그래밍: Scikit-learn을 사용한 기계 학습

Jun 18, 2023 pm 03:33 PM
python scikit-learn 서버 프로그래밍

Python 서버 프로그래밍: Scikit-learn을 사용한 기계 학습

과거 네트워크 애플리케이션에서 개발자는 주로 서비스 제공을 위해 효과적인 서버 측 코드를 작성하는 방법에 집중해야 했습니다. 그러나 머신러닝이 부상하면서 더욱 지능적이고 개인화된 서비스를 달성하기 위해 데이터 처리 및 분석이 필요한 애플리케이션이 점점 더 많아지고 있습니다. 이 기사에서는 기계 학습을 위해 Python 서버 측에서 Scikit-learn 라이브러리를 사용하는 방법을 소개합니다.

Scikit-learn이란 무엇인가요?

Scikit-learn은 Python 프로그래밍 언어를 기반으로 하는 오픈 소스 기계 학습 라이브러리입니다. 여기에는 분류, 클러스터링, 분석 등 일반적인 기계 학습을 처리하기 위한 수많은 기계 학습 알고리즘과 도구가 포함되어 있습니다. 회귀. Scikit-learn은 또한 개발자가 데이터를 더 잘 이해하고 분석하는 데 도움이 되는 시각화 도구뿐만 아니라 풍부한 모델 평가 및 최적화 도구도 제공합니다.

서버 측에서 Scikit-learn을 사용하는 방법

서버 측에서 Scikit-learn을 사용하려면 먼저 사용되는 Python 버전과 Scikit-learn 버전이 요구 사항을 충족하는지 확인해야 합니다. Scikit-learn은 일반적으로 최신 버전의 Python 2 및 Python 3에 필요합니다. Scikit-learn은 pip를 통해 설치할 수 있습니다. 설치 명령은 다음과 같습니다.

pip install scikit-learn
로그인 후 복사

설치가 완료되면 다음 단계를 통해 Python 서버에서 기계 학습에 Scikit-learn을 사용할 수 있습니다.

  1. Scikit-learn 라이브러리 가져오기 및 사용할 모델

Python에서는 import 문을 사용하여 Scikit-learn 라이브러리를 가져올 수 있고 from 문을 통해 사용해야 하는 기계 학습 모델을 가져올 수 있습니다. 예:

import sklearn
from sklearn.linear_model import LinearRegression
로그인 후 복사
  1. Load the data set

머신러닝을 하기 전에, 데이터세트를 서버 측에 로드해야 합니다. Scikit-learn은 CSV, JSON 및 SQL 데이터 형식을 포함한 다양한 데이터 세트 가져오기를 지원하며 해당 도구 라이브러리 및 함수를 사용하여 데이터 세트를 Python으로 로드할 수 있습니다. 예를 들어, .csv 파일은 pandas 라이브러리를 사용하여 Python으로 쉽게 읽을 수 있습니다.

import pandas as pd
data = pd.read_csv('data.csv')
로그인 후 복사
  1. 데이터세트 분할

데이터세트를 로드한 후 기계 학습 훈련을 위한 훈련 세트와 테스트 세트로 분할해야 합니다. 모델과 테스트. Scikit-learn은 데이터 세트를 훈련 세트와 테스트 세트로 나누는 데 도움이 되는 train_test_split 함수를 제공합니다.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
로그인 후 복사

그 중 train_test_split 함수는 주어진 비율에 따라 데이터 세트를 훈련 세트와 테스트 세트로 분할합니다. test_size 매개변수는 테스트 세트의 크기를 지정하고, random_state 매개변수는 데이터 세트를 나눌 때 난수 시드를 지정합니다.

  1. 모델 학습

데이터 세트를 학습 세트와 테스트 세트로 나눈 후 Fit 기능을 통해 머신러닝 모델을 학습시킬 수 있습니다.

model = LinearRegression()
model.fit(X_train, y_train)
로그인 후 복사

그 중에서 선형 회귀 모델을 선택하고 Fit 함수를 사용하여 훈련했습니다. X_train과 y_train은 각각 훈련 세트의 특징 행렬과 목표 값입니다.

  1. 모델 평가

모델 학습을 완료한 후에는 모델을 평가하여 성능과 정확성을 확인해야 합니다. Scikit-learn에서는 점수 함수를 사용하여 모델을 평가할 수 있습니다.

model.score(X_test, y_test)
로그인 후 복사

여기서 X_test와 y_test는 각각 테스트 세트의 기능 매트릭스와 목표 값입니다.

요약

Python 서버 측에서 기계 학습에 Scikit-learn을 사용하는 것은 매우 편리하고 효율적입니다. Scikit-learn은 개발자가 데이터를 더 효과적으로 처리 및 분석하고 보다 지능적이고 개인화된 서비스를 달성하는 데 도움이 되는 수많은 기계 학습 알고리즘과 도구를 제공합니다. 위의 단계를 통해 Scikit-learn을 Python 서버 측에 쉽게 통합하고 기계 학습에 사용할 수 있습니다.

위 내용은 Python 서버 프로그래밍: Scikit-learn을 사용한 기계 학습의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP 및 Python : 코드 예제 및 비교 PHP 및 Python : 코드 예제 및 비교 Apr 15, 2025 am 12:07 AM

PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Apr 15, 2025 am 12:16 AM

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker 원리에 대한 자세한 설명 Docker 원리에 대한 자세한 설명 Apr 14, 2025 pm 11:57 PM

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

터미널 VSCODE에서 프로그램을 실행하는 방법 터미널 VSCODE에서 프로그램을 실행하는 방법 Apr 15, 2025 pm 06:42 PM

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Python에서 비주얼 스튜디오 코드를 사용할 수 있습니다 Apr 15, 2025 pm 08:18 PM

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Windows 8에서 코드를 실행할 수 있습니다 Windows 8에서 코드를 실행할 수 있습니다 Apr 15, 2025 pm 07:24 PM

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VScode 확장자가 악의적입니까? VScode 확장자가 악의적입니까? Apr 15, 2025 pm 07:57 PM

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.

See all articles