백엔드 개발 파이썬 튜토리얼 Scrapy 및 MongoDB를 사용하여 시계열 기반 데이터 기록 및 분석 구현

Scrapy 및 MongoDB를 사용하여 시계열 기반 데이터 기록 및 분석 구현

Jun 22, 2023 am 10:18 AM
mongodb 시계열 scrapy

빅데이터와 데이터 마이닝 기술의 급속한 발전으로 사람들은 시계열 데이터의 기록과 분석에 점점 더 많은 관심을 기울이고 있습니다. 웹 크롤러 측면에서 Scrapy는 매우 훌륭한 크롤러 프레임워크이고 MongoDB는 매우 훌륭한 NoSQL 데이터베이스입니다. 이 기사에서는 Scrapy와 MongoDB를 사용하여 시계열 기반 데이터 기록 및 분석을 구현하는 방법을 소개합니다.

1. Scrapy 설치 및 사용

Scrapy는 Python 언어로 구현된 웹 크롤러 프레임워크입니다. 다음 명령을 사용하여 Scrapy를 설치할 수 있습니다.

pip install scrapy
로그인 후 복사

설치가 완료된 후 Scrapy를 사용하여 크롤러를 작성할 수 있습니다. 아래에서는 Scrapy의 사용법을 이해하기 위해 간단한 크롤러 예제를 사용합니다.

1. Scrapy 프로젝트 만들기

명령줄 터미널에서 다음 명령을 통해 새 Scrapy 프로젝트를 만듭니다.

scrapy startproject scrapy_example
로그인 후 복사

프로젝트가 생성된 후 다음 명령을 통해 프로젝트의 루트 디렉터리에 들어갈 수 있습니다.

cd scrapy_example
로그인 후 복사

2. 크롤러 작성

다음 명령을 사용하여 새 크롤러를 만들 수 있습니다.

scrapy genspider example www.example.com
로그인 후 복사

여기의 예는 사용자 정의된 크롤러 이름이고 www.example.com은 크롤링된 웹사이트의 도메인 이름입니다. Scrapy는 기본 크롤러 템플릿 파일을 생성하여 이 파일을 편집하여 크롤러를 작성할 수 있습니다.

이 예에서는 간단한 웹 페이지를 크롤링하고 웹 페이지의 텍스트 콘텐츠를 텍스트 파일에 저장합니다. 크롤러 코드는 다음과 같습니다.

import scrapy

class ExampleSpider(scrapy.Spider):
    name = "example"
    start_urls = ["https://www.example.com/"]

    def parse(self, response):
        filename = "example.txt"
        with open(filename, "w") as f:
            f.write(response.text)
        self.log(f"Saved file {filename}")
로그인 후 복사

3. 크롤러 실행

크롤러를 실행하기 전에 먼저 Scrapy 구성을 설정합니다. 프로젝트의 루트 디렉터리에서 settings.py 파일을 찾아 ROBOTSTXT_OBEY를 False로 설정하면 크롤러가 모든 웹사이트를 크롤링할 수 있습니다.

ROBOTSTXT_OBEY = False
로그인 후 복사

다음으로 다음 명령을 통해 크롤러를 실행할 수 있습니다.

scrapy crawl example
로그인 후 복사

작업이 완료되면 프로젝트의 루트 디렉터리에서 우리가 크롤링한 텍스트 콘텐츠가 포함된 example.txt 파일을 볼 수 있습니다. .

2. MongoDB 설치 및 사용

MongoDB는 매우 뛰어난 NoSQL 데이터베이스입니다. 다음 명령을 사용하여 MongoDB를 설치할 수 있습니다.

sudo apt-get install mongodb
로그인 후 복사

설치가 완료되면 MongoDB 서비스를 시작해야 합니다. 명령줄 터미널에 다음 명령을 입력합니다.

sudo service mongodb start
로그인 후 복사

MongoDB 서비스를 성공적으로 시작한 후 MongoDB Shell을 통해 데이터를 작업할 수 있습니다.

1. 데이터베이스 생성

MongoDB 데이터베이스에 연결하려면 명령줄 터미널에 다음 명령을 입력하세요.

mongo
로그인 후 복사

연결에 성공한 후 다음 명령을 사용하여 새 데이터베이스를 생성할 수 있습니다. scrapytest는 사용자 정의 데이터베이스 이름입니다.

2. 컬렉션 만들기

MongoDB에서는 컬렉션을 사용하여 데이터를 저장합니다. 다음 명령을 사용하여 새 컬렉션을 만들 수 있습니다.

use scrapytest
로그인 후 복사

여기의 예는 사용자 정의 컬렉션 이름입니다.

3. 데이터 삽입

Python에서는 pymongo 라이브러리를 사용하여 MongoDB 데이터베이스에 액세스할 수 있습니다. 다음 명령을 사용하여 pymongo 라이브러리를 설치할 수 있습니다.

db.createCollection("example")
로그인 후 복사

설치가 완료된 후 다음 코드를 사용하여 데이터를 삽입할 수 있습니다.

pip install pymongo
로그인 후 복사

여기의 데이터는 두 필드 제목을 포함하여 삽입하려는 데이터입니다. 그리고 내용.

4. 데이터 쿼리

다음 코드를 사용하여 데이터를 쿼리할 수 있습니다.

import pymongo

client = pymongo.MongoClient(host="localhost", port=27017)
db = client["scrapytest"]
collection = db["example"]
data = {"title": "example", "content": "Hello World!"}
collection.insert_one(data)
로그인 후 복사

여기서 쿼리 조건은 "title": "example"입니다. 이는 제목 필드가 example과 동일한 데이터를 쿼리한다는 의미입니다. 쿼리 결과에는 전체 데이터 문서가 포함되며, result["content"]를 통해 콘텐츠 필드의 값을 가져올 수 있습니다.

3. Scrapy와 MongoDB의 결합

실제 크롤러 애플리케이션에서는 크롤링된 데이터를 데이터베이스에 저장하고 시계열로 데이터를 기록하고 분석해야 하는 경우가 많습니다. Scrapy와 MongoDB의 조합은 이러한 요구 사항을 잘 충족할 수 있습니다.

Scrapy에서는 파이프라인을 사용하여 크롤링된 데이터를 처리하고 데이터를 MongoDB에 저장할 수 있습니다.

1. 파이프라인 생성

Scrapy 프로젝트의 루트 디렉터리에 파이프라인.py라는 파일을 생성하고 이 파일에 파이프라인을 정의할 수 있습니다. 이 예에서는 크롤링된 데이터를 MongoDB에 저장하고 데이터 레코드의 타임스탬프를 나타내는 타임스탬프 필드를 추가합니다. 코드는 다음과 같습니다.

import pymongo

client = pymongo.MongoClient(host="localhost", port=27017)
db = client["scrapytest"]
collection = db["example"]
result = collection.find_one({"title": "example"})
print(result["content"])
로그인 후 복사

이 파이프라인은 크롤러가 항목을 크롤링할 때마다 호출됩니다. 크롤링된 항목을 사전으로 변환하고 타임스탬프 필드를 추가한 다음 전체 사전을 MongoDB에 저장합니다.

2. 파이프라인 구성

Scrapy 프로젝트의 루트 디렉터리에서 settings.py 파일을 찾고 ITEM_PIPELINES를 방금 정의한 파이프라인으로 설정합니다.

import pymongo
from datetime import datetime

class ScrapyExamplePipeline:
    def open_spider(self, spider):
        self.client = pymongo.MongoClient("localhost", 27017)
        self.db = self.client["scrapytest"]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        collection = self.db[spider.name]
        item["timestamp"] = datetime.now()
        collection.insert_one(dict(item))
        return item
로그인 후 복사

여기서 300은 파이프라인의 우선순위입니다. 파이프라인은 의 모든 파이프라인 실행 순서에 있습니다.

3. 크롤러 코드 수정

방금 작성한 크롤러 코드를 수정하고 항목을 파이프라인에 전달합니다.

ITEM_PIPELINES = {
   "scrapy_example.pipelines.ScrapyExamplePipeline": 300,
}
로그인 후 복사

여기에서는 웹페이지의 텍스트 콘텐츠를 크롤링하고 해당 콘텐츠를 텍스트 필드에 저장했습니다. Scrapy는 처리를 위해 이 항목을 정의된 파이프라인에 전달합니다.

4. 데이터 쿼리

이제 크롤링된 데이터를 MongoDB에 저장할 수 있습니다. 또한 시계열 기록 및 분석을 구현해야 합니다. MongoDB의 쿼리 및 집계 작업을 사용하여 이를 수행할 수 있습니다.

특정 기간의 데이터 찾기:

import scrapy

class ExampleSpider(scrapy.Spider):
    name = "example"
    start_urls = ["https://www.example.com/"]

    def parse(self, response):
        for text in response.css("p::text"):
            yield {"text": text.extract()}
로그인 후 복사

여기에서 2021년의 모든 데이터를 찾을 수 있습니다.

统计每个小时内的记录数:

import pymongo

client = pymongo.MongoClient("localhost", 27017)
db = client["scrapytest"]
collection = db["example"]
pipeline = [
    {"$group": {"_id": {"$hour": "$timestamp"}, "count": {"$sum": 1}}},
    {"$sort": {"_id": 1}},
]
result = collection.aggregate(pipeline)
for item in result:
    print(f"{item['_id']}: {item['count']}")
로그인 후 복사

这里我们使用MongoDB的聚合操作来统计每个小时内的记录数。

通过Scrapy和MongoDB的结合使用,我们可以方便地实现时间序列的数据记录和分析。这种方案的优点是具有较强的扩展性和灵活性,可以适用于各种不同的应用场景。不过,由于本方案的实现可能涉及到一些较为复杂的数据结构和算法,所以在实际应用中需要进行一定程度的优化和调整。

위 내용은 Scrapy 및 MongoDB를 사용하여 시계열 기반 데이터 기록 및 분석 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

mongodb에는 일반적으로 어떤 버전이 사용됩니까? mongodb에는 일반적으로 어떤 버전이 사용됩니까? Apr 07, 2024 pm 05:48 PM

최신 기능과 개선 사항을 제공하는 최신 버전의 MongoDB(현재 5.0) 사용을 권장합니다. 버전을 선택할 때 기능 요구 사항, 호환성, 안정성 및 커뮤니티 지원을 고려해야 합니다. 예를 들어 최신 버전에는 트랜잭션 및 집계 파이프라인 최적화와 같은 기능이 있습니다. 버전이 애플리케이션과 호환되는지 확인하세요. 프로덕션 환경의 경우 장기 지원 버전을 선택하세요. 최신 버전에는 더욱 활발한 커뮤니티 지원이 포함되어 있습니다.

시계열 확률 예측을 위한 분위수 회귀 시계열 확률 예측을 위한 분위수 회귀 May 07, 2024 pm 05:04 PM

원본 내용의 의미를 바꾸지 말고 내용을 미세 조정하고 내용을 다시 작성하고 계속하지 마십시오. "분위수 회귀는 이러한 요구를 충족하여 정량화된 확률로 예측 구간을 제공합니다. 이는 특히 응답 변수의 조건부 분포에 관심이 있는 경우 예측 변수와 응답 변수 간의 관계를 모델링하는 데 사용되는 통계 기술입니다. 기존 회귀와 달리 분위수 회귀는 조건부 평균보다는 반응 변수의 조건부 크기를 추정하는 데 중점을 둡니다. "그림 (A): 분위수 회귀 분위수 회귀의 개념은 추정입니다. 회귀 변수 집합 X와 설명된 변수 Y의 분위수. 기존 회귀모형은 실제로 설명변수와 설명변수의 관계를 연구하기 위한 방법이다. 그들은 설명 변수와 설명 변수 사이의 관계에 중점을 둡니다.

nodejs와 vuejs의 차이점 nodejs와 vuejs의 차이점 Apr 21, 2024 am 04:17 AM

Node.js는 서버측 JavaScript 런타임인 반면, Vue.js는 대화형 사용자 인터페이스를 생성하기 위한 클라이언트측 JavaScript 프레임워크입니다. Node.js는 백엔드 서비스 API 개발, 데이터 처리 등 서버 측 개발에 사용되고, Vue.js는 단일 페이지 애플리케이션, 반응형 사용자 인터페이스 등 클라이언트 측 개발에 사용됩니다.

시계열 예측 + NLP 대규모 모델에 대한 새로운 작업: 시계열 예측을 위한 암시적 프롬프트 자동 생성 시계열 예측 + NLP 대규모 모델에 대한 새로운 작업: 시계열 예측을 위한 암시적 프롬프트 자동 생성 Mar 18, 2024 am 09:20 AM

오늘 저는 시계열 예측 성능을 향상시키기 위해 잠재 공간에서 시계열 데이터를 대규모 자연어 처리(NLP) 모델과 정렬하는 방법을 제안하는 코네티컷 대학의 최근 연구 작업을 공유하고 싶습니다. 이 방법의 핵심은 잠재 공간 힌트(프롬프트)를 사용하여 시계열 예측의 정확성을 높이는 것입니다. 논문 제목: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting 다운로드 주소: https://arxiv.org/pdf/2403.05798v1.pdf 1. 큰 문제 배경 모델

mongodb가 생성한 데이터베이스는 어디에 있나요? mongodb가 생성한 데이터베이스는 어디에 있나요? Apr 07, 2024 pm 05:39 PM

MongoDB 데이터베이스의 데이터는 로컬 파일 시스템, 네트워크 파일 시스템 또는 클라우드 스토리지에 있는 지정된 데이터 디렉터리에 저장됩니다. 구체적인 위치는 다음과 같습니다. 로컬 파일 시스템: 기본 경로는 Linux/macOS입니다. /데이터/db, Windows: C:\data\db. 네트워크 파일 시스템: 경로는 파일 시스템에 따라 다릅니다. 클라우드 스토리지: 경로는 클라우드 스토리지 제공업체에 의해 결정됩니다.

mongodb 데이터베이스의 장점은 무엇입니까? mongodb 데이터베이스의 장점은 무엇입니까? Apr 07, 2024 pm 05:21 PM

MongoDB 데이터베이스는 유연성, 확장성 및 고성능으로 잘 알려져 있습니다. 그 장점은 다음과 같습니다: 데이터를 유연하고 구조화되지 않은 방식으로 저장할 수 있는 문서 데이터 모델입니다. 샤딩을 통해 여러 서버로 수평 확장이 가능합니다. 쿼리 유연성, 복잡한 쿼리 및 집계 작업을 지원합니다. 데이터 복제 및 내결함성은 데이터 중복성과 고가용성을 보장합니다. 프런트엔드 애플리케이션과의 손쉬운 통합을 위한 JSON 지원. 많은 양의 데이터를 처리하는 경우에도 빠른 응답을 위한 고성능입니다. 오픈 소스이며 사용자 정의가 가능하고 무료로 사용할 수 있습니다.

몽고디비는 무슨 뜻인가요? 몽고디비는 무슨 뜻인가요? Apr 07, 2024 pm 05:57 PM

MongoDB는 대량의 정형 및 비정형 데이터를 저장하고 관리하는 데 사용되는 문서 중심의 분산 데이터베이스 시스템입니다. 핵심 개념은 문서 저장 및 배포이며 주요 기능으로는 동적 스키마, 인덱싱, 집계, 맵 축소 및 복제가 있습니다. 콘텐츠 관리 시스템, 전자상거래 플랫폼, 소셜 미디어 웹사이트, IoT 애플리케이션, 모바일 애플리케이션 개발에 널리 사용됩니다.

몽고디비를 여는 방법 몽고디비를 여는 방법 Apr 07, 2024 pm 06:15 PM

Linux/macOS: 데이터 디렉터리를 생성하고 "mongod" 서비스를 시작합니다. Windows의 경우: 데이터 디렉터리를 만들고 Service Manager에서 MongoDB 서비스를 시작합니다. Docker에서: "docker run" 명령을 실행하십시오. 다른 플랫폼: MongoDB 설명서를 참조하세요. 확인 방법: "mongo" 명령을 실행하여 연결하고 서버 버전을 확인하세요.

See all articles