백엔드 개발 Golang Beego에서 Kafka 및 Flink를 사용한 실시간 스트림 처리

Beego에서 Kafka 및 Flink를 사용한 실시간 스트림 처리

Jun 22, 2023 pm 04:18 PM
kafka flink beego

빅데이터 시대가 도래하면서 실시간 데이터를 처리하고 분석해야 하는 경우가 많습니다. 실시간 스트림 처리 기술은 고성능, 높은 확장성, 낮은 지연 시간으로 인해 대규모 실시간 데이터를 처리하는 주요 방법으로 자리 잡았습니다. 실시간 스트림 처리 기술에서 Kafka와 Flink는 공통 구성 요소이며 많은 기업 수준의 데이터 처리 시스템에서 널리 사용되었습니다. 이 기사에서는 실시간 스트림 처리를 위해 Beego에서 Kafka와 Flink를 사용하는 방법을 소개합니다.

1. Kafka 소개

Apache Kafka는 분산 스트림 처리 플랫폼입니다. 데이터를 스트림(스트리밍 데이터)으로 분리하고 여러 노드에 데이터를 분산함으로써 고성능, 고가용성, 높은 확장성 및 정확히 한 번 보장과 같은 일부 고급 기능을 제공합니다. Kafka의 주요 역할은 분산 시스템의 여러 구성 요소 간의 통신 문제와 안정적인 메시지 전송을 해결하는 데 사용할 수 있는 안정적인 메시징 시스템입니다.

2. Flink 소개

Flink는 이벤트 중심의 분산형 고성능 빅데이터 스트림 처리 프레임워크입니다. 스트림 및 일괄 처리를 지원하고, SQL과 유사한 쿼리 및 스트림 처리 기능을 갖추고 있으며, 구성성이 뛰어난 스트리밍 컴퓨팅을 지원하고, 풍부한 창 및 데이터 스토리지 지원을 제공합니다.

3. Beego의 Kafka

Beego에서 Kafka를 사용하는 것은 크게 Kafka 소비자와 Kafka 생산자의 두 부분으로 나뉩니다.

  1. Kafka Producer

Beego에서 Kafka Producer를 사용하면 Kafka 클러스터에 쉽게 데이터를 보낼 수 있습니다. 다음은 Beego에서 Kafka Producer를 사용하는 방법에 대한 예입니다.

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 生产者
    producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 创建 Kafka 消息
    msg := &sarama.ProducerMessage{
        Topic: "test",
        Value: sarama.StringEncoder("Hello, World!"),
    }

    // 发送消息
    partition, offset, err := producer.SendMessage(msg)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    fmt.Printf("消息已发送到分区 %d 的偏移量 %d 中
", partition, offset)

    // 关闭 Kafka 生产者
    producer.Close()
}
로그인 후 복사
  1. Kafka Consumer

Beego에서 Kafka 소비자를 사용하면 Kafka 클러스터에서 쉽게 데이터를 얻을 수 있습니다. 다음은 Beego에서 Kafka 소비자를 사용하는 방법에 대한 예입니다.

import (
    "github.com/Shopify/sarama"
)

func main() {
    // 创建 kafka 消费者
    consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, nil)

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    // 订阅 Topic
    partitions, err := consumer.Partitions("test")

    if err != nil {
        // 处理错误情况
        panic(err)
    }

    for _, partition := range partitions {
        // 从分区的开头读取数据
        partitionConsumer, _ := consumer.ConsumePartition("test", partition, sarama.OffsetOldest)

        // 处理数据
        go func(partitionConsumer sarama.PartitionConsumer) {
            for {
                select {
                case msg := <-partitionConsumer.Messages():
                    // 处理消息
                    fmt.Printf("收到消息: %v", string(msg.Value))
                }
            }
        }(partitionConsumer)
    }

    // 关闭 Kafka 消费者
    defer consumer.Close()
}
로그인 후 복사

4. Flink in Beego

Beego에서 Flink를 사용하면 Flink의 Java API를 통해 직접 수행할 수 있으며 전체 Java와 Go 간의 Cgo 상호작용을 통해 프로세스가 완료됩니다. 다음은 실시간 스트림 처리를 통해 각 소켓 텍스트 단어의 빈도가 계산되는 Flink의 간단한 예입니다. 이 예에서는 주어진 텍스트 데이터 스트림을 Flink로 읽은 다음 Flink의 연산자를 사용하여 데이터 스트림에 대해 작업하고 마지막으로 결과를 콘솔에 출력합니다.

  1. 소켓 텍스트 데이터 소스 만들기
import org.apache.flink.streaming.api.functions.source.SourceFunction;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.Socket;

public class SocketTextStreamFunction implements SourceFunction<String> {
    private final String hostname;
    private final int port;

    public SocketTextStreamFunction(String hostname, int port) {
        this.hostname = hostname;
        this.port = port;
    }

    public void run(SourceContext<String> context) throws Exception {
        Socket socket = new Socket(hostname, port);
        BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));
        String line;
        while ((line = reader.readLine()) != null) {
            context.collect(line);
        }
        reader.close();
        socket.close();
    }

    public void cancel() {}
}
로그인 후 복사
  1. 각 단어의 빈도 계산
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

public class SocketTextStreamWordCount {
    public static void main(String[] args) throws Exception {
        String hostname = "localhost";
        int port = 9999;

        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 从 Socket 中读取数据流
        DataStream<String> text = env.addSource(new SocketTextStreamFunction(hostname, port));

        // 计算每个单词的出现频率
        DataStream<Tuple2<String, Integer>> wordCounts = text
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                        String[] words = value.toLowerCase().split("\W+");
                        for (String word : words) {
                            out.collect(new Tuple2<String, Integer>(word, 1));
                        }
                    }
                })
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .apply(new WindowFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple, TimeWindow>() {
                    public void apply(Tuple key, TimeWindow window, Iterable<Tuple2<String, Integer>> input, Collector<Tuple2<String, Integer>> out) throws Exception {
                        int sum = 0;
                        for (Tuple2<String, Integer> t : input) {
                            sum += t.f1;
                        }
                        out.collect(new Tuple2<String, Integer>((String) key.getField(0), sum));
                    }
                });

        // 打印到控制台
        wordCounts.print();

        env.execute("Socket Text Stream Word Count");
    }
}
로그인 후 복사

5. 결론

이 글에서는 실시간 스트림 처리를 위해 Beego에서 Kafka와 Flink를 사용하는 방법을 소개합니다. Kafka는 분산 시스템의 여러 구성 요소 간의 통신 문제와 안정적인 메시지 전송을 해결하기 위한 안정적인 메시징 시스템으로 사용될 수 있습니다. Flink는 이벤트 중심의 분산형 고성능 빅데이터 스트림 처리 프레임워크입니다. 실제 응용 프로그램에서는 대규모 실시간 데이터 처리 문제를 해결하기 위해 특정 요구 사항에 따라 Kafka 및 Flink와 같은 기술을 유연하게 사용할 수 있습니다.

위 내용은 Beego에서 Kafka 및 Flink를 사용한 실시간 스트림 처리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Kafka를 사용하여 실시간 주식 분석을 구현하는 방법 PHP와 Kafka를 사용하여 실시간 주식 분석을 구현하는 방법 Jun 28, 2023 am 10:04 AM

인터넷과 기술의 발달로 디지털 투자에 대한 관심이 높아지고 있습니다. 많은 투자자들은 더 높은 투자 수익을 얻기 위해 계속해서 투자 전략을 탐색하고 연구합니다. 주식거래에 있어서 실시간 주식분석은 의사결정에 매우 중요한데, Kafka 실시간 메시지 큐와 PHP 기술을 활용하는 것은 효율적이고 실용적인 수단이다. 1. Kafka 소개 Kafka는 LinkedIn에서 개발한 처리량이 높은 분산 게시 및 구독 메시징 시스템입니다. 카프카의 주요 기능은 다음과 같습니다.

React와 Apache Kafka를 사용하여 실시간 데이터 처리 애플리케이션을 구축하는 방법 React와 Apache Kafka를 사용하여 실시간 데이터 처리 애플리케이션을 구축하는 방법 Sep 27, 2023 pm 02:25 PM

React 및 Apache Kafka를 사용하여 실시간 데이터 처리 애플리케이션을 구축하는 방법 소개: 빅 데이터 및 실시간 데이터 처리가 증가함에 따라 실시간 데이터 처리 애플리케이션 구축은 많은 개발자의 추구 사항이 되었습니다. 널리 사용되는 프런트엔드 프레임워크인 React와 고성능 분산 메시징 시스템인 Apache Kafka의 조합은 실시간 데이터 처리 애플리케이션을 구축하는 데 도움이 될 수 있습니다. 이 기사에서는 React와 Apache Kafka를 사용하여 실시간 데이터 처리 애플리케이션을 구축하는 방법을 소개합니다.

Kafka 탐색을 위한 다섯 가지 시각화 도구 선택 Kafka 탐색을 위한 다섯 가지 시각화 도구 선택 Feb 01, 2024 am 08:03 AM

Kafka 시각화 도구를 위한 다섯 가지 옵션 ApacheKafka는 대량의 실시간 데이터를 처리할 수 있는 분산 스트림 처리 플랫폼입니다. 실시간 데이터 파이프라인, 메시지 대기열 및 이벤트 기반 애플리케이션을 구축하는 데 널리 사용됩니다. Kafka의 시각화 도구는 사용자가 Kafka 클러스터를 모니터링 및 관리하고 Kafka 데이터 흐름을 더 잘 이해하는 데 도움이 될 수 있습니다. 다음은 널리 사용되는 5가지 Kafka 시각화 도구에 대한 소개입니다.

Kafka 시각화 도구 비교 분석: 가장 적합한 도구를 선택하는 방법은 무엇입니까? Kafka 시각화 도구 비교 분석: 가장 적합한 도구를 선택하는 방법은 무엇입니까? Jan 05, 2024 pm 12:15 PM

올바른 Kafka 시각화 도구를 선택하는 방법은 무엇입니까? 다섯 가지 도구 비교 분석 소개: Kafka는 빅데이터 분야에서 널리 사용되는 고성능, 높은 처리량의 분산 메시지 대기열 시스템입니다. Kafka의 인기로 인해 점점 더 많은 기업과 개발자가 Kafka 클러스터를 쉽게 모니터링하고 관리하기 위한 시각적 도구를 필요로 하고 있습니다. 이 기사에서는 일반적으로 사용되는 5가지 Kafka 시각화 도구를 소개하고 각 기능을 비교하여 독자가 자신의 필요에 맞는 도구를 선택할 수 있도록 돕습니다. 1. 카프카매니저

기술 세계를 탐험할 수 있도록 Go 언어 오픈 소스 프로젝트 5개를 선택했습니다. 기술 세계를 탐험할 수 있도록 Go 언어 오픈 소스 프로젝트 5개를 선택했습니다. Jan 30, 2024 am 09:08 AM

오늘날 급속한 기술 발전의 시대에 프로그래밍 언어는 비가 내린 뒤 버섯처럼 솟아오르고 있습니다. 많은 주목을 받고 있는 언어 중 하나가 바로 Go 언어인데, 단순성, 효율성, 동시성 안전성 등 다양한 기능으로 많은 개발자들에게 사랑을 받고 있습니다. Go 언어는 뛰어난 오픈 소스 프로젝트가 많이 포함된 강력한 생태계로 유명합니다. 이 기사에서는 선택된 Go 언어 오픈 소스 프로젝트 5개를 소개하고 독자가 Go 언어 오픈 소스 프로젝트의 세계를 탐색하도록 안내합니다. KubernetesKubernetes는 자동화를 위한 오픈 소스 컨테이너 오케스트레이션 엔진입니다.

go-zero와 Kafka+Avro의 실천: 고성능 대화형 데이터 처리 시스템 구축 go-zero와 Kafka+Avro의 실천: 고성능 대화형 데이터 처리 시스템 구축 Jun 23, 2023 am 09:04 AM

최근 몇 년 동안 빅 데이터와 활발한 오픈 소스 커뮤니티가 증가하면서 점점 더 많은 기업이 증가하는 데이터 요구 사항을 충족하기 위해 고성능 대화형 데이터 처리 시스템을 찾기 시작했습니다. 이러한 기술 업그레이드의 물결 속에서 go-zero와 Kafka+Avro는 점점 더 많은 기업에서 주목을 받고 채택되고 있습니다. go-zero는 Golang 언어를 기반으로 개발된 마이크로서비스 프레임워크로, 기업이 효율적인 마이크로서비스 애플리케이션 시스템을 신속하게 구축할 수 있도록 설계되었으며, 고성능, 사용 용이성, 쉬운 확장성을 갖추고 있습니다. 급속한 성장

Beego에서 Docker 및 Kubernetes를 사용한 프로덕션 배포 및 관리 Beego에서 Docker 및 Kubernetes를 사용한 프로덕션 배포 및 관리 Jun 23, 2023 am 08:58 AM

인터넷의 급속한 발전으로 인해 점점 더 많은 기업이 애플리케이션을 클라우드 플랫폼으로 마이그레이션하기 시작했습니다. Docker와 Kubernetes는 클라우드 플랫폼에서 애플리케이션 배포 및 관리를 위한 매우 인기 있고 강력한 두 가지 도구가 되었습니다. Beego는 Golang을 사용하여 개발된 웹 프레임워크로 HTTP 라우팅, MVC 계층화, 로깅, 구성 관리, 세션 관리 등 다양한 기능을 제공합니다. 이 기사에서는 Docker와 Kub를 사용하는 방법을 다룹니다.

Rocky Linux에 Apache Kafka를 설치하는 방법은 무엇입니까? Rocky Linux에 Apache Kafka를 설치하는 방법은 무엇입니까? Mar 01, 2024 pm 10:37 PM

RockyLinux에 ApacheKafka를 설치하려면 다음 단계를 수행할 수 있습니다. 시스템 업데이트: 먼저 RockyLinux 시스템이 최신인지 확인하고 다음 명령을 실행하여 시스템 패키지를 업데이트합니다. sudoyumupdate Java 설치: ApacheKafka는 Java에 의존하므로 먼저 JDK(Java Development Kit)를 설치해야 합니다. OpenJDK는 다음 명령을 통해 설치할 수 있습니다. sudoyuminstalljava-1.8.0-openjdk-devel 다운로드 및 압축 해제: ApacheKafka 공식 웹사이트()를 방문하여 최신 바이너리 패키지를 다운로드합니다. 안정적인 버전을 선택하세요

See all articles