PHP의 딥러닝 알고리즘 구현 원리
Principle of Deep Learning Algorithm Implement in PHP
소개:
인공 지능의 급속한 발전으로 딥 러닝 알고리즘은 오늘날 가장 인기 있고 강력한 기계 학습 기술 중 하나가 되었습니다. 딥러닝은 신경망 모델을 훈련함으로써 인간의 사고와 학습 과정을 시뮬레이션할 수 있어 대규모의 복잡한 데이터를 분석하고 처리할 수 있습니다. 이 기사에서는 PHP에서 딥러닝 알고리즘을 구현하는 방법을 소개하고 해당 코드 예제를 제공합니다.
1. 신경망 구조
딥 러닝에서 신경망은 여러 레이어(또는 숨겨진 레이어)로 구성되며 각 레이어에는 여러 뉴런이 포함됩니다. 뉴런은 입력 데이터를 수신하고 출력 값을 생성하며, 이는 다음 수준의 입력 역할을 합니다. 다음은 간단한 3계층 신경망 구조의 예입니다.
class NeuralNetwork { private $inputLayer; private $hiddenLayer; private $outputLayer; public function __construct($inputLayer, $hiddenLayer, $outputLayer) { $this->inputLayer = $inputLayer; $this->hiddenLayer = $hiddenLayer; $this->outputLayer = $outputLayer; } // 神经网络前向传播 public function forwardPropagation($input) { $hiddenLayerOutput = $this->inputLayer->process($input); $outputLayerOutput = $this->hiddenLayer->process($hiddenLayerOutput); return $outputLayerOutput; } // 神经网络反向传播 public function backPropagation($input, $output, $learningRate) { $outputError = $this->outputLayer->getError($output); $hiddenLayerError = $this->hiddenLayer->backPropagate($outputError, $learningRate); $this->inputLayer->backPropagate($hiddenLayerError, $learningRate); } }
2. 신경망 수준
신경망에서 각 수준의 기능은 입력 데이터를 의미 있는 출력 데이터로 변환하는 것입니다. 다음은 간단한 계층 구조의 예입니다.
class Layer { private $weights; private $bias; public function __construct($neuronCount, $inputCount) { $this->weights = Matrix::random($neuronCount, $inputCount); $this->bias = Matrix::random($neuronCount, 1); } public function process($input) { $weightedSum = $this->weights->multiply($input)->add($this->bias); return $this->activation($weightedSum); } public function backPropagate($error, $learningRate) { $weightedError = $this->weights->transpose()->multiply($error); $gradient = Matrix::applyFunction($this->output, $this->derivative); $gradient = $gradient->multiply($weightedError); $delta = $gradient->multiplyScalar($learningRate); $this->weights = $this->weights->subtract($delta); $this->bias = $this->bias->subtract($gradient); return $gradient; } private function activation($value) { return $value->applyFunction($this->sigmoid); } private function derivative($value) { return $value->multiply($value->subtract(1)); } private function sigmoid($value) { return 1 / (1 + exp(-$value)); } }
3. 행렬 연산
신경망의 계산 과정에서 행렬 연산은 필수입니다. 다음은 행렬의 덧셈, 뺄셈, 곱셈, 전치 및 응용 기능과 같은 기본 연산을 다루는 간단한 행렬 클래스 예입니다.
class Matrix { private $data; private $rows; private $columns; public function __construct($rows, $columns, $data) { $this->rows = $rows; $this->columns = $columns; $this->data = $data; } public function add($matrix) { //进行矩阵相加操作 } public function subtract($matrix) { //进行矩阵相减操作 } public function multiply($matrix) { //进行矩阵乘法操作 } public function transpose() { //进行矩阵转置操作 } public function applyFunction($function) { //应用函数到矩阵 } public function multiplyScalar($scalar) { //矩阵数乘操作 } public static function random($rows, $columns) { //生成随机矩阵 } }
4. 모델 훈련
딥 러닝에서 모델 훈련은 핵심 단계입니다. 알려진 입력 및 출력 데이터를 신경망에 제공함으로써 네트워크는 가중치와 편향을 지속적으로 조정하여 정확도를 학습하고 향상시킵니다. 다음은 간단한 훈련 모델의 예입니다:
class Training { private $neuralNetwork; private $learningRate; public function __construct($neuralNetwork, $learningRate) { $this->neuralNetwork = $neuralNetwork; $this->learningRate = $learningRate; } public function train($input, $output) { $prediction = $this->neuralNetwork->forwardPropagation($input); $this->neuralNetwork->backPropagation($input, $output, $this->learningRate); } }
결론:
위의 예 코드를 통해 PHP에서 딥러닝 알고리즘을 구현하는 것이 복잡하지 않다는 것을 알 수 있습니다. 신경망의 구조, 계층 구조, 행렬 연산 및 기타 기본 연산을 설계하고 모델 학습 프로세스를 결합함으로써 PHP 언어를 사용하여 딥 러닝 알고리즘을 구현하고 적용할 수 있습니다. 이 글이 PHP에서 딥러닝 알고리즘을 구현하는 데 도움이 되기를 바랍니다.
위 내용은 PHP의 딥러닝 알고리즘 구현 원리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP 8.4는 상당한 양의 기능 중단 및 제거를 통해 몇 가지 새로운 기능, 보안 개선 및 성능 개선을 제공합니다. 이 가이드에서는 Ubuntu, Debian 또는 해당 파생 제품에서 PHP 8.4를 설치하거나 PHP 8.4로 업그레이드하는 방법을 설명합니다.

CakePHP는 PHP용 오픈 소스 프레임워크입니다. 이는 애플리케이션을 훨씬 쉽게 개발, 배포 및 유지 관리할 수 있도록 하기 위한 것입니다. CakePHP는 강력하고 이해하기 쉬운 MVC와 유사한 아키텍처를 기반으로 합니다. 모델, 뷰 및 컨트롤러 gu

VS Code라고도 알려진 Visual Studio Code는 모든 주요 운영 체제에서 사용할 수 있는 무료 소스 코드 편집기 또는 통합 개발 환경(IDE)입니다. 다양한 프로그래밍 언어에 대한 대규모 확장 모음을 통해 VS Code는

CakePHP는 오픈 소스 MVC 프레임워크입니다. 이를 통해 애플리케이션 개발, 배포 및 유지 관리가 훨씬 쉬워집니다. CakePHP에는 가장 일반적인 작업의 과부하를 줄이기 위한 여러 라이브러리가 있습니다.

이 튜토리얼은 PHP를 사용하여 XML 문서를 효율적으로 처리하는 방법을 보여줍니다. XML (Extensible Markup Language)은 인간의 가독성과 기계 구문 분석을 위해 설계된 다목적 텍스트 기반 마크 업 언어입니다. 일반적으로 데이터 저장 AN에 사용됩니다
