BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가
MLLM(다중 모드 대형 언어 모델)은 LLM의 풍부한 지식 보유와 강력한 추론 및 일반화 기능을 활용하여 다중 모드 문제를 해결합니다. 그림 보기 및 쓰기, 그림 보기 및 코드 작성과 같은 몇 가지 놀라운 기능이 등장했습니다.
그러나 이러한 사례만으로는 MLLM의 성과를 충분히 반영하기 어렵고, MLLM에 대한 종합적인 평가가 아직 부족합니다.
이를 위해 Tencent Youtu Lab과 Xiamen University는 새로 구축된 평가 벤치마크 MM에서 처음으로 기존 오픈 소스 MLLM 모델 12개에 대한 종합적인 정량 평가를 실시하고 인식 및 인지 전체 목록을 포함한 16개의 순위를 발표했습니다. 및 14개의 하위 목록:
문서 링크: https://arxiv.org/pdf/2306.13394.pdf
프로젝트 링크: https://github.com/BradyFU/Awesome -Multimodal- Large-Language-Models/tree/Evaluation
기존 MLLM의 정량적 평가 방법은 크게 세 가지로 나누어지는데, 모두 성능을 완전히 반영하기 어려운 한계점을 갖고 있습니다.
첫 번째 범주의 방법은 이미지 캡션 및 VQA(Visual Question Answering) 데이터 세트와 같은 기존 공개 데이터 세트에서 평가됩니다.
그러나 한편으로는 이러한 기존 데이터 세트가 MLLM의 새로운 새로운 기능을 반영하지 못할 수도 있습니다. 반면에 대규모 모델 시대의 훈련 세트는 더 이상 통합되지 않기 때문에 이러한 기능을 보장하기 어렵습니다. 평가 데이터 세트는 다른 MLLM에서 훈련되지 않았습니다.
두 번째 방법은 공개 평가를 위해 새로운 데이터를 수집하는 것인데, 이러한 데이터는 공개되지 않거나 [1] 숫자가 너무 적습니다(사진 50장만) [2].
세 번째 방법은 대상 환각[3] 또는 적대적 견고성[4]과 같은 MLLM의 특정 측면에 초점을 맞추며 완전히 평가할 수 없습니다.
MLLM의 급속한 발전에 맞춰 종합적인 평가 벤치마크가 시급합니다. 연구자들은 보편적 종합 평가 벤치마크가 다음과 같은 특징을 가져야 한다고 믿습니다.
(1) 지각 및 인지 능력을 포함하여 최대한 많은 범위를 포괄해야 합니다. 전자는 사물의 존재, 수량, 위치, 색상 등을 포함하여 사물을 식별하는 것을 말합니다. 후자는 감각 정보와 지식을 LLM에 통합하여 보다 복잡한 추론을 수행하는 것을 의미합니다. 전자가 후자의 기초이다.
(2) 데이터 또는 주석은 데이터 유출 위험을 줄이기 위해 기존 공개 데이터 세트를 최대한 사용하지 않아야 합니다.
(3) 지침은 최대한 간결해야 하며 인간의 인지 습관과 일치해야 합니다. 다양한 지침 설계는 모델의 출력에 큰 영향을 미칠 수 있지만 모든 모델은 공정성을 보장하기 위해 통일되고 간결한 지침에 따라 평가됩니다. 좋은 MLLM 모델은 즉각적인 엔지니어링에 빠지지 않도록 간결한 지침으로 일반화할 수 있는 능력이 있어야 합니다.
(4) 이 간결한 지시에 따른 MLLM의 출력은 정량적 통계에 직관적이고 편리해야 합니다. MLLM의 개방형 답변은 정량적 통계에 큰 도전을 제기합니다. 기존 방법은 GPT나 수동 채점을 사용하는 경향이 있으나 부정확성과 주관성의 문제에 직면할 수 있습니다.
그림 1. MME 평가 벤치마크 예시. 각 그림은 두 가지 질문에 해당하며, 대답은 각각 예[Y]와 아니오[N]입니다. 질문에 "예 또는 아니오로 대답해 주세요"라는 질문을 더해 명령을 구성합니다.
위의 이유로 위의 네 가지 특성을 동시에 갖는 새로운 MLLM 평가 벤치마크 MME가 구성되었습니다.
1 MME는 지각 능력과 인지 능력을 동시에 평가합니다. OCR 외에도 감지 기능에는 대략적이고 세밀한 대상 인식이 포함됩니다. 전자는 물체의 존재 여부, 수량, 위치 및 색상을 식별합니다. 후자는 영화 포스터, 유명 인사, 장면, 명소 및 예술 작품을 식별합니다. 인지 능력에는 상식 추론, 수치 계산, 텍스트 번역 및 코드 추론이 포함됩니다. 그림 1에 표시된 것처럼 하위 작업의 총 개수는 14개에 이릅니다.
2. MME의 모든 명령-응답 쌍은 수동으로 구성됩니다. 공개적으로 사용 가능한 몇 가지 데이터 세트의 경우 원래 주석에 의존하지 않고 해당 이미지만 사용되었습니다. 동시에 연구자들은 수동 사진 촬영 및 이미지 생성을 통해 데이터 수집에 최선을 다합니다.
3. MME 지침은 프롬프트 엔지니어링이 모델 출력에 미치는 영향을 피하기 위해 최대한 간결하게 설계되었습니다. 연구원들은 좋은 MLLM은 모든 모델에 공평한 간결하고 자주 사용되는 지침을 일반화해야 한다고 반복합니다. 각 하위 작업에 대한 지침은 그림 1에 나와 있습니다.
4. "예 또는 아니오로 대답해 주세요"라는 명령 설계 덕분에 모델의 "예" 또는 "아니요" 출력을 기반으로 정량적 통계를 쉽게 수행할 수 있습니다. 연구자들이 객관식 질문에 대한 지침을 설계하려고 시도했지만 현재의 MLLM이 여전히 더 복잡한 지침을 따르기가 어렵다는 점은 주목할 가치가 있습니다.
연구원들은 BLIP-2 [5], LLaVA [6], MiniGPT-4 [7], mPLUG-Owl [2], LLaMA-Adapter-v2 [8 ], Otter [9], Multimodal-GPT [10], InstructBLIP [11], VisualGLM-6B [12], PandaGPT [13], ImageBind-LLM [14] 및 LaVIN [15].
그 중에는 Accuracy, Accuracy+, Score 등 세 가지 통계 지표가 있습니다. 각 작업에 대해 정확도는 질문 통계를 기반으로 하고, 정확도+는 그림 통계를 기반으로 하며(그림에 해당하는 두 질문 모두 올바르게 답해야 함), 점수는 정확도와 정확도+의 합입니다.
지각 총점은 10개의 지각 하위 작업 점수의 합이고, 인지 총점은 4개의 인지 작업 점수의 합입니다. 자세한 내용은 프로젝트 링크를 참조하세요.
14개 하위 작업에 대한 12개 모델의 테스트 비교는 그림 2에 나와 있습니다.
그림 2. 14개 하위 작업에 대한 12개 모델 비교. 각 하위 작업의 총점은 200점입니다.
지각 및 인지 카테고리 전체 목록과 14개 하위 작업 목록 등 총 16개 목록도 공개되었습니다. 두 개의 전체 목록은 각각 그림 3과 4에 나와 있습니다. BLIP-2와 InstructBLIP이 두 목록 모두에서 상위 3개 안에 남아 있다는 점은 주목할 가치가 있습니다.
Pictures
그림 3. 지각 작업의 전체 목록
그림 4. 인지 작업의 전체 목록
그림 5. 모든 목록
인 또한 연구원들은 후속 모델 최적화에 대한 지침을 제공하기 위해 그림 6과 같이 실험에서 MLLM 모델에 의해 노출된 몇 가지 일반적인 문제를 요약했습니다.
Pictures
그림 6. MLLM이 노출한 일반적인 문제. [Y]/[N]은 실제 대답이 예/아니요임을 의미합니다. [R]은 MLLM이 생성한 답변입니다.
첫 번째 문제는 지침을 따르지 않는 것입니다.
매우 간결한 지침 설계가 채택되었지만 지침을 따르기보다는 질문에 자유롭게 답변하는 MLLM이 여전히 있습니다.
그림 6의 첫 번째 줄에 표시된 것처럼 명령에는 "예 또는 아니요로 대답해 주세요"라고 명시되어 있지만 MLLM은 선언적 답변만 제공했습니다. 답변 시작 부분에 "예" 또는 "아니요"가 표시되지 않으면 답변이 잘못된 것으로 판단됩니다. 좋은 MLLM은 특히 명령어를 미세 조정한 후에 이러한 간단한 명령어를 일반화할 수 있어야 합니다.
두 번째 문제는 인식 부족입니다.
그림 6의 두 번째 행과 같이 MLLM이 첫 번째 그림의 바나나 개수와 두 번째 그림의 개수를 잘못 식별하여 오답이 나왔습니다. 연구자들은 또한 동일한 그림에 대해 단 한 단어만 다른 두 가지 지시 사항이 완전히 다른 지각 결과를 가져오기 때문에 지각 성능이 지시 사항 변경에 의해 쉽게 영향을 받는다는 사실을 발견했습니다.
세 번째 문제는 추론 능력이 부족하다는 것입니다.
그림 6의 세 번째 줄에 표시된 것처럼 MLLM은 첫 번째 사진이 사무실 공간이 아니라는 것을 이미 알고 있음에도 불구하고 "예"라고 오답을 줬다는 빨간색 텍스트를 통해 알 수 있습니다.
마찬가지로 두 번째 사진에서도 MLLM이 정확한 연산 결과를 계산했지만, 결국 역시 틀린 답을 내놨습니다. “단계적으로 생각해보자”와 같은 사고 연쇄 프롬프트를 추가하면 더 나은 결과를 얻을 수 있습니다. 이 분야에 대한 보다 심층적인 연구를 기대합니다.
네 번째 질문은 명령에 따른 물체 비전입니다. 그림 6의 네 번째 줄에 표시된 것처럼 명령에 그림에 존재하지 않는 개체가 포함되어 있으면 MLLM은 개체가 존재한다고 가정하고 최종적으로 "예"라고 대답합니다.
항상 "예"라고 대답하는 이러한 접근 방식은 정확도가 50%에 가깝고 정확도+가 0에 가깝습니다. 이는 대상 환각을 억제하는 것의 중요성을 보여주며 MLLM에서 생성된 답변의 신뢰성에 대해 더 깊이 생각해 볼 필요가 있음을 보여줍니다.
위 내용은 BLIP-2와 InstructBLIP이 확실히 상위 3위 안에 들었습니다! 12개 주요 모델, 16개 목록, '다중 모드 대형 언어 모델' 종합 평가의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
