과학자들은 인공 지능 앞에서 인류가 미래에 선택할 수 있는 것은 파괴와 가상 불멸이라는 두 가지뿐일 수 있다고 말합니다.
우리는 기술적 특이점에 도달했을지도 모릅니다! 2045년에는 인공지능의 컴퓨팅 능력이 인간의 두뇌 수준에 이를 것으로 예상된다. 예측 정확도가 86%에 달하는 유명 미래학자 레이 커즈와일(Ray Kurzweil)이 인공지능의 미래를 예측한 내용이다.
인간의 뇌를 시뮬레이션하는 등 복잡한 계산을 수행할 수 있는 인공지능이 있다는 것은 무엇을 의미하나요? 인류에게 축복인가, 저주인가?
논의하기에 앞서 인공지능의 세 가지 유형에 대해 먼저 이해해야 합니다. 첫째, 좁은 인공지능이 있다. 집중된 영역에서만 작동합니다. 예를 들어 자율주행, 체스를 두는 알파독 등이 있습니다.
일반인공지능(AI)은 거의 모든 작업에서 인간을 보조할 수 있지만, 부차적으로도 마찬가지입니다. 그러나 실제로 그들은 우리보다 약간 더 똑똑할 뿐입니다. 물론 현재의 연구 결과는 현실화에 매우 가깝지만, 현실화까지는 아직 멀었다.
마지막 과학자들이 정말 걱정하는 것은 바로 초인공지능 ASI입니다. 그들은 인간보다 수백만 배 또는 수십억 배 더 똑똑합니다. 양측 사이의 인지적 격차는 개미와 인간의 인지격차만큼 다릅니다.
미래에는 세상을 운영하는 중요한 임무를 인공지능에게 완전히 맡길 수 있습니다. 나는 생존에 대한 모든 압박을 제쳐두고 태양, 해변, 아름다운 삶을 즐깁니다.
100% 완성된 ASI는 만능이 되니까요. 지구의 기후 변화를 되돌리는 것, 에너지를 수확하는 새로운 방법을 찾는 것, 모든 질병을 치료하거나 전 세계 기아를 해결하는 것, 심지어 은하계를 식민지화하는 것까지 모두 여러분의 손끝에 있을 것입니다.
인체에 수십억 개의 나노로봇을 이식할 수 있을 뿐만 아니라 손상되거나 죽은 세포를 지속적으로 수리하고 교체하여 우리를 영원히 젊고 활력있게 유지할 수 있습니다. 우리는 가상 세계에서 불멸을 달성하기 위해 우리의 의식을 인터넷에 업로드할 수도 있습니다.
이 말을 들으면서 언젠가 그것이 현실이 된다면 의심할 여지 없이 인류 역사상 가장 축하할 만한 일이 될 것이라고 느끼시나요?
하지만 악성이라면 어떨까 생각해보신 적 있으신가요? 아니면 인간을 지구에 대한 위협으로 보고 지구를 구하기 위해 인간을 제거하기로 결정하면 어떻게 될까요?
어느 날, 이 양날의 검이 정말로 나타나는 날. 우리 앞에 남은 유일한 선택은 완전한 멸종이나 가상세계에서의 영생뿐이다.
AI는 매우 강력할 수 있지만 본질적으로 서버에 저장된 코드 조각일 뿐입니다. 사람에게 해를 끼치지 말라는 지시사항만 입력하면 쉽게 할 수 있습니다. 무슨 일이 일어나더라도 유사한 상황이 발생하지 않도록 비상 종료 버튼을 누를 수도 있습니다.
하지만 잊지 마세요. 이것은 인간 지능보다 수십억 배 더 높은 초인공지능입니다. 자신의 인식을 훨씬 넘어서는 것을 통제하려는 것은 매우 어리석은 생각입니다.
인터넷을 종료하더라도 자신을 보호하기 위해 여전히 개인 네트워크를 설정할 수 있습니다. 초저주파 소리를 사용하여 인간에게 최면을 걸면 인터넷에 다시 액세스할 수 있습니다.
통제할 수 없기 때문에 최선의 해결책은 만들지 않는 것일 수도 있습니다. 그러나 기술 발전의 속도는 멈추기 어렵다.
그래서 어떤 관점에서 보면 미래에는 초인공지능이 반드시 등장할 것입니다. 그러나 그것은 인류의 마지막 발명품일지도 모른다.
위 내용은 과학자들은 인공 지능 앞에서 인류가 미래에 선택할 수 있는 것은 파괴와 가상 불멸이라는 두 가지뿐일 수 있다고 말합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

프런트엔드 개발 세계에서 VSCode는 강력한 기능과 풍부한 플러그인 생태계를 통해 수많은 개발자가 선택하는 도구가 되었습니다. 최근 몇 년 동안 인공지능 기술의 급속한 발전으로 VSCode의 AI 코드 도우미가 등장하여 개발자의 코딩 효율성이 크게 향상되었습니다. VSCode의 AI 코드 도우미는 비가 내린 후 버섯처럼 생겨나 개발자의 코딩 효율성을 크게 향상시켰습니다. 인공 지능 기술을 사용하여 코드를 지능적으로 분석하고 정확한 코드 완성, 자동 오류 수정, 문법 검사 및 기타 기능을 제공하여 코딩 과정에서 개발자의 오류와 지루한 수동 작업을 크게 줄입니다. 오늘은 여러분의 프로그래밍 여정에 도움이 될 VSCode 프런트엔드 개발 AI 코드 도우미 12명을 추천해 드리겠습니다.
