목차
현상 5
분석
이제 내 마음은 질문으로 가득 차 있습니다
字符串变量转切片
字符串直接转切片
결론

Jul 24, 2023 pm 04:13 PM
go

이전 글은 슬라이싱과 관련된 마법의 문제였습니다. 구체적인 마법 방법은 무엇인가요? 다음 현상을 살펴보겠습니다.

현상 2

a := "abc"
bs := []byte(a)
fmt.Println(bs, len(bs), cap(bs))
// 输出: [97 98 99] 3 8
로그인 후 복사

현상 3

a := "abc"
bs := []byte(a)
fmt.Println(len(bs), cap(bs))
// 输出: 3 32
로그인 후 복사

현상 4

bs := []byte("abc")
fmt.Println(len(bs), cap(bs))
// 输出: 3 3
로그인 후 복사

현상 5

a := ""
bs := []byte(a)
fmt.Println(bs, len(bs), cap(bs))
// 输出: [] 0 0
로그인 후 복사

분석

이제 내 마음은 질문으로 가득 차 있습니다

字符串变量转切片

一个小小的字符串转切片, 内部究竟发生了什么, 竟然如此的神奇。这种时候只好祭出前一篇文章的套路了, 看看汇编代码(希望之后有机会能够对go的汇编语法进行简单的介绍)有没有什么关键词能够帮助我们

以下为现象一转换的汇编代码关键部分

"".main STEXT size=495 args=0x0 locals=0xd8
0x0000 00000 (test.go:5)	TEXT	"".main(SB), ABIInternal, $216-0
0x0000 00000 (test.go:5)	MOVQ	(TLS), CX
0x0009 00009 (test.go:5)	LEAQ	-88(SP), AX
0x000e 00014 (test.go:5)	CMPQ	AX, 16(CX)
0x0012 00018 (test.go:5)	JLS	485
0x0018 00024 (test.go:5)	SUBQ	$216, SP
0x001f 00031 (test.go:5)	MOVQ	BP, 208(SP)
0x0027 00039 (test.go:5)	LEAQ	208(SP), BP
0x002f 00047 (test.go:5)	FUNCDATA	$0, gclocals·7be4bbacbfdb05fb3044e36c22b41e8b(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$1, gclocals·648d0b72bb9d7f59fbfdbee57a078eee(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$2, gclocals·2dfddcc7190380b1ae77e69d81f0a101(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$3, "".main.stkobj(SB)
0x002f 00047 (test.go:6)	PCDATA	$0, $1
0x002f 00047 (test.go:6)	PCDATA	$1, $0
0x002f 00047 (test.go:6)	LEAQ	go.string."abc"(SB), AX
0x0036 00054 (test.go:6)	MOVQ	AX, "".a+96(SP)
0x003b 00059 (test.go:6)	MOVQ	$3, "".a+104(SP)
0x0044 00068 (test.go:7)	MOVQ	$0, (SP)
0x004c 00076 (test.go:7)	PCDATA	$0, $0
0x004c 00076 (test.go:7)	MOVQ	AX, 8(SP)
0x0051 00081 (test.go:7)	MOVQ	$3, 16(SP)
0x005a 00090 (test.go:7)	CALL	runtime.stringtoslicebyte(SB)
0x005f 00095 (test.go:7)	MOVQ	40(SP), AX
0x0064 00100 (test.go:7)	MOVQ	32(SP), CX
0x0069 00105 (test.go:7)	PCDATA	$0, $2
0x0069 00105 (test.go:7)	MOVQ	24(SP), DX
0x006e 00110 (test.go:7)	PCDATA	$0, $0
0x006e 00110 (test.go:7)	PCDATA	$1, $1
0x006e 00110 (test.go:7)	MOVQ	DX, "".bs+112(SP)
0x0073 00115 (test.go:7)	MOVQ	CX, "".bs+120(SP)
0x0078 00120 (test.go:7)	MOVQ	AX, "".bs+128(SP)
로그인 후 복사

以下为现象二转换的汇编代码关键部分

"".main STEXT size=393 args=0x0 locals=0xe0
0x0000 00000 (test.go:5)	TEXT	"".main(SB), ABIInternal, $224-0
0x0000 00000 (test.go:5)	MOVQ	(TLS), CX
0x0009 00009 (test.go:5)	LEAQ	-96(SP), AX
0x000e 00014 (test.go:5)	CMPQ	AX, 16(CX)
0x0012 00018 (test.go:5)	JLS	383
0x0018 00024 (test.go:5)	SUBQ	$224, SP
0x001f 00031 (test.go:5)	MOVQ	BP, 216(SP)
0x0027 00039 (test.go:5)	LEAQ	216(SP), BP
0x002f 00047 (test.go:5)	FUNCDATA	$0, gclocals·0ce64bbc7cfa5ef04d41c861de81a3d7(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$1, gclocals·00590b99cfcd6d71bbbc6e05cb4f8bf8(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$2, gclocals·8dcadbff7c52509cfe2d26e4d7d24689(SB)
0x002f 00047 (test.go:5)	FUNCDATA	$3, "".main.stkobj(SB)
0x002f 00047 (test.go:6)	PCDATA	$0, $1
0x002f 00047 (test.go:6)	PCDATA	$1, $0
0x002f 00047 (test.go:6)	LEAQ	go.string."abc"(SB), AX
0x0036 00054 (test.go:6)	MOVQ	AX, "".a+120(SP)
0x003b 00059 (test.go:6)	MOVQ	$3, "".a+128(SP)
0x0047 00071 (test.go:7)	PCDATA	$0, $2
0x0047 00071 (test.go:7)	LEAQ	""..autotmp_5+64(SP), CX
0x004c 00076 (test.go:7)	PCDATA	$0, $1
0x004c 00076 (test.go:7)	MOVQ	CX, (SP)
0x0050 00080 (test.go:7)	PCDATA	$0, $0
0x0050 00080 (test.go:7)	MOVQ	AX, 8(SP)
0x0055 00085 (test.go:7)	MOVQ	$3, 16(SP)
0x005e 00094 (test.go:7)	CALL	runtime.stringtoslicebyte(SB)
0x0063 00099 (test.go:7)	MOVQ	40(SP), AX
0x0068 00104 (test.go:7)	MOVQ	32(SP), CX
0x006d 00109 (test.go:7)	PCDATA	$0, $3
0x006d 00109 (test.go:7)	MOVQ	24(SP), DX
0x0072 00114 (test.go:7)	PCDATA	$0, $0
0x0072 00114 (test.go:7)	PCDATA	$1, $1
0x0072 00114 (test.go:7)	MOVQ	DX, "".bs+136(SP)
0x007a 00122 (test.go:7)	MOVQ	CX, "".bs+144(SP)
0x0082 00130 (test.go:7)	MOVQ	AX, "".bs+152(SP)
로그인 후 복사

在看汇编代码之前, 我们首先来看一看runtime.stringtoslicebyte的函数签名

func stringtoslicebyte(buf *tmpBuf, s string) []byte
로그인 후 복사

到这里只靠关键词已经无法看出更多的信息了,还是需要稍微了解一下汇编的语法,笔者在这里列出一点简单的分析, 之后我们还是可以通过取巧的方法发现更多的东西

// 现象一给runtime.stringtoslicebyte的传参
0x002f 00047 (test.go:6)	LEAQ	go.string."abc"(SB), AX // 将字符串"abc"放入寄存器AX
0x0036 00054 (test.go:6)	MOVQ	AX, "".a+96(SP) // 将AX中的内容存入变量a中
0x003b 00059 (test.go:6)	MOVQ	$3, "".a+104(SP) // 将字符串长度3存入变量a中
0x0044 00068 (test.go:7)	MOVQ	$0, (SP) // 将0 传递个runtime.stringtoslicebyte(SB)的第一个参数(笔者猜测对应go中的nil)
0x004c 00076 (test.go:7)	PCDATA	$0, $0 // 据说和gc有关, 具体还不清楚, 一般情况可以忽略
0x004c 00076 (test.go:7)	MOVQ	AX, 8(SP) // 将AX中的内容传递给runtime.stringtoslicebyte(SB)的第二个参数
0x0051 00081 (test.go:7)	MOVQ	$3, 16(SP) // 将字符串长度传递给runtime.stringtoslicebyte(SB)的第二个参数
0x005a 00090 (test.go:7)	CALL	runtime.stringtoslicebyte(SB) // 调用函数, 此行后面的几行代码是将返回值赋值给变量bs

// 现象二给runtime.stringtoslicebyte的传参
0x002f 00047 (test.go:6)	LEAQ	go.string."abc"(SB), AX // 将字符串"abc"放入寄存器AX
0x0036 00054 (test.go:6)	MOVQ	AX, "".a+120(SP) // 将AX中的内容存入变量a中
0x003b 00059 (test.go:6)	MOVQ	$3, "".a+128(SP) // 将字符串长度3存入变量a中
0x0047 00071 (test.go:7)	PCDATA	$0, $2
0x0047 00071 (test.go:7)	LEAQ	""..autotmp_5+64(SP), CX // 将内部变量autotmp_5放入寄存器CX
0x004c 00076 (test.go:7)	PCDATA	$0, $1
0x004c 00076 (test.go:7)	MOVQ	CX, (SP) // 将CX中的内容传递给runtime.stringtoslicebyte(SB)的第一个参数
0x0050 00080 (test.go:7)	PCDATA	$0, $0
0x0050 00080 (test.go:7)	MOVQ	AX, 8(SP) // 将AX中的内容传递给runtime.stringtoslicebyte(SB)的第二个参数
0x0055 00085 (test.go:7)	MOVQ	$3, 16(SP) // 将字符串长度传递给runtime.stringtoslicebyte(SB)的第二个参数
0x005e 00094 (test.go:7)	CALL	runtime.stringtoslicebyte(SB)
로그인 후 복사

通过上面汇编代码的分析可以知道,现象一和现象二的区别就是传递给runtime.stringtoslicebyte的第一个参数不同。通过对runtime包中stringtoslicebyte函数分析,第一个参数是否有值和字符串长度会影响代码执行的分支,从而生成不同的切片, 因此容量不一样也是常理之中, 下面我们看源码

func stringtoslicebyte(buf *tmpBuf, s string) []byte {
var b []byte
if buf != nil && len(s) <= len(buf) {
		*buf = tmpBuf{}
		b = buf[:len(s)]
	} else {
		b = rawbyteslice(len(s))
	}
copy(b, s)
return b
}
로그인 후 복사

然而, stringtoslicebyte的第一个参数什么情况下才会有值,什么情况下为nil, 我们仍然不清楚。那怎么办呢, 只好祭出全局搜索大法:

# 在go源码根目录执行下面的命令
grep stringtoslicebyte -r . | grep -v "//"
로그인 후 복사

最终在go的编译器源码cmd/compile/internal/gc/walk.go发现了如下代码块

我们查看mkcall 函数签名可以知道, 从第四个参数开始的所有变量都会作为参数传递给第一个参数对应的函数, 最后生成一个*Node的变量。其中Node结构体解释如下:

// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
로그인 후 복사

综合上述信息我们得出的结论是,编译器会对stringtoslicebyte的函数调用生成一个AST(抽象语法树)对应的节点。因此我们也知道传递给stringtoslicebyte函数的第一个变量也就对应于上图中的变量a.

其中a的初始值为nodnil()的返回值,即默认为nil. 但是n.Esc == EscNone时,a会变成一个数组。我们看一下EscNone的解释.

// 此代码位于cmd/compile/internal/gc/esc.go中
const (
// ...
	EscNone           // Does not escape to heap, result, or parameters.
    ...
)
로그인 후 복사

由上可知, EscNone用来判断变量是否逃逸,到这儿了我们就很好办了,接下来我们对现象一和现象二的代码进行逃逸分析.

# 执行变量逃逸分析命令: go run -gcflags &#39;-m -l&#39; test.go
# 现象一逃逸分析如下:
./test.go:7:14: ([]byte)(a) escapes to heap
./test.go:8:13: main ... argument does not escape
./test.go:8:13: bs escapes to heap
./test.go:8:21: len(bs) escapes to heap
./test.go:8:30: cap(bs) escapes to heap
[97 98 99] 3 8
# 现象二逃逸分析如下:
./test.go:7:14: main ([]byte)(a) does not escape
./test.go:8:13: main ... argument does not escape
./test.go:8:17: len(bs) escapes to heap
./test.go:8:26: cap(bs) escapes to heap
3 32
로그인 후 복사

根据上面的信息我们知道在现象一中,bs变量发生了逃逸,现象二中变量未发生逃逸,也就是说stringtoslicebyte函数的第一个参数在变量未发生逃逸时其值不为nil,变量发生逃逸时其值为nil。到这里我们已经搞明白stringtoslicebyte的第一个参数了, 那我们继续分析stringtoslicebyte的内部逻辑

我们在runtime/string.go中看到stringtoslicebyte第一个参数的类型定义如下:

const tmpStringBufSize = 32

type tmpBuf [tmpStringBufSize]byte
로그인 후 복사

综上: 现象二中bs变量未发生变量逃逸, stringtoslicebyte第一个参数不为空且是一个长度为32的byte数组, 因此在现象二中生成了一个容量为32的切片

根据对stringtoslicebyte的源码分析, 我们知道现象一调用了rawbyteslice函数

func rawbyteslice(size int) (b []byte) {
cap := roundupsize(uintptr(size))
	p := mallocgc(cap, nil, false)
if cap != uintptr(size) {
		memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size))
	}

	*(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)}
return
}
로그인 후 복사

由上面的代码知道, 切片的容量通过runtime/msize.go中的roundupsize函数计算得出, 其中_MaxSmallSize和class_to_size均定义在runtime/sizeclasses.go

func roundupsize(size uintptr) uintptr {
if size < _MaxSmallSize {
if size <= smallSizeMax-8 {
return uintptr(class_to_size[size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]])
		} else {
return uintptr(class_to_size[size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]])
		}
	}
if size+_PageSize < size {
return size
	}
return round(size, _PageSize)
}
로그인 후 복사

由于字符串abc的长度小于_MaxSmallSize(32768),故切片的长度只能取数组class_to_size中的值, 即0, 8, 16, 32, 48, 64, 80, 96, 112, 128....s

至此, 现象一中切片容量为什么为8也真相大白了。相信到这里很多人已经明白现象四和现象五是怎么回事儿了, 其逻辑分别与现象一和现象二是一致的, 有兴趣的, 可以在自己的电脑上面试一试。

字符串直接转切片

那你说了这么多, 现象三还是不能解释啊。请各位看官莫急, 接下来我们继续分析。

相信各位细心的小伙伴应该早就发现了我们在上面的cmd/compile/internal/gc/walk.go源码图中折叠了部分代码, 现在我们就将这块神秘的代码赤裸裸的展示出来


이 코드 조각을 분석한 결과 go 컴파일러는 字符串转字节切片生成AST时,总共分为三步。

  1. 先判断该变量是否是常量字符串,如果是常量字符串,则直接通过types.NewArray문자열과 길이가 같은 배열을 생성합니다

  2. 상수 문자열에 의해 생성된 슬라이스 변수도 이스케이프 분석을 거쳐 크기가 문자열보다 큰지 확인해야 합니다. 함수 스택은 할당을 허용합니다. 노드가 스택에 할당되었는지 힙에 할당되었는지 결정하기 위해 변수의 최대 길이를 제공합니다

  3. 마지막으로 문자열 길이가 0보다 큰 경우 문자열 내용을 바이트 슬라이스에 복사하고 반품. 따라서 현상 3의 슬라이싱 용량은 3임이 확실합니다

결론

문자열을 바이트 슬라이싱으로 변환하는 단계는 다음과 같습니다

  1. 상수인지 확인합니다. 상수, 동일한 용량 및 길이로 변환합니다. 바이트 슬라이스

  2. 변수인 경우 먼저 생성된 슬라이스에 변수 이스케이프가 있는지 확인합니다

  • 이스케이프되거나 문자열 길이가 32보다 크면 다릅니다. 문자열 길이를 기준으로 용량을 계산할 수 있습니다

  • Escape가 없고 문자열 길이가 입니다.ㅋㅋㅋ .interface{}), 컴파일 중에 매개변수의 특정 유형을 결정하기 어렵고 이스케이프도 발생합니다

클로저 참조 객체 이스케이프

위 내용은 의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Go WebSocket 메시지를 보내는 방법은 무엇입니까? Go WebSocket 메시지를 보내는 방법은 무엇입니까? Jun 03, 2024 pm 04:53 PM

Go에서는 gorilla/websocket 패키지를 사용하여 WebSocket 메시지를 보낼 수 있습니다. 특정 단계: WebSocket 연결을 설정합니다. 문자 메시지 보내기: WriteMessage(websocket.TextMessage,[]byte("Message"))를 호출합니다. 바이너리 메시지 보내기: WriteMessage(websocket.BinaryMessage,[]byte{1,2,3})를 호출합니다.

Go에서 정규식을 사용하여 타임스탬프를 일치시키는 방법은 무엇입니까? Go에서 정규식을 사용하여 타임스탬프를 일치시키는 방법은 무엇입니까? Jun 02, 2024 am 09:00 AM

Go에서는 정규식을 사용하여 타임스탬프를 일치시킬 수 있습니다. ISO8601 타임스탬프를 일치시키는 데 사용되는 것과 같은 정규식 문자열을 컴파일합니다. ^\d{4}-\d{2}-\d{2}T \d{ 2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . regexp.MatchString 함수를 사용하여 문자열이 정규식과 일치하는지 확인합니다.

Golang 함수 수명주기 및 변수 범위에 대한 심층적인 이해 Golang 함수 수명주기 및 변수 범위에 대한 심층적인 이해 Apr 19, 2024 am 11:42 AM

Go에서 함수 수명주기에는 정의, 로드, 연결, 초기화, 호출 및 반환이 포함됩니다. 변수 범위는 함수 수준과 블록 수준으로 구분됩니다. 함수 내의 변수는 내부적으로 표시되지만 블록 내의 변수는 블록 내에서만 표시됩니다. .

Golang과 Go 언어의 차이점 Golang과 Go 언어의 차이점 May 31, 2024 pm 08:10 PM

Go와 Go 언어는 서로 다른 특성을 지닌 서로 다른 개체입니다. Go(Golang이라고도 함)는 동시성, 빠른 컴파일 속도, 메모리 관리 및 크로스 플랫폼 이점으로 유명합니다. Go 언어의 단점은 다른 언어에 비해 생태계가 덜 풍부하고 구문이 더 엄격하며 동적 타이핑이 부족하다는 점입니다.

Golang 기술 성능 최적화에서 메모리 누수를 방지하는 방법은 무엇입니까? Golang 기술 성능 최적화에서 메모리 누수를 방지하는 방법은 무엇입니까? Jun 04, 2024 pm 12:27 PM

메모리 누수로 인해 파일, 네트워크 연결, 데이터베이스 연결 등 더 이상 사용하지 않는 리소스를 닫는 방식으로 Go 프로그램 메모리가 지속적으로 증가할 수 있습니다. 더 이상 강력하게 참조되지 않는 경우 약한 참조를 사용하여 메모리 누수 및 가비지 수집 대상 개체를 방지합니다. go 코루틴을 사용하면 메모리 누수를 방지하기 위해 종료 시 코루틴 스택 메모리가 자동으로 해제됩니다.

IDE에서 Golang 함수 문서를 보는 방법은 무엇입니까? IDE에서 Golang 함수 문서를 보는 방법은 무엇입니까? Apr 18, 2024 pm 03:06 PM

IDE를 사용하여 Go 함수 문서 보기: 함수 이름 위에 커서를 놓습니다. 단축키(GoLand: Ctrl+Q, VSCode: GoExtensionPack 설치 후 F1을 누르고 "Go:ShowDocumentation" 선택)를 누릅니다.

Golang의 오류 래퍼를 사용하는 방법은 무엇입니까? Golang의 오류 래퍼를 사용하는 방법은 무엇입니까? Jun 03, 2024 pm 04:08 PM

Golang에서 오류 래퍼를 사용하면 원래 오류에 상황별 정보를 추가하여 새로운 오류를 생성할 수 있습니다. 이는 다양한 라이브러리나 구성 요소에서 발생하는 오류 유형을 통합하여 디버깅 및 오류 처리를 단순화하는 데 사용할 수 있습니다. 단계는 다음과 같습니다. error.Wrap 함수를 사용하여 원래 오류를 새 오류로 래핑합니다. 새 오류에는 원래 오류의 상황별 정보가 포함됩니다. fmt.Printf를 사용하면 래핑된 오류를 출력하여 더 많은 컨텍스트와 실행 가능성을 제공할 수 있습니다. 다양한 유형의 오류를 처리할 때 오류 유형을 통합하려면 오류.Wrap 함수를 사용하세요.

단위 테스트 Go 동시 기능 가이드 단위 테스트 Go 동시 기능 가이드 May 03, 2024 am 10:54 AM

단위 테스트 동시 기능은 동시 환경에서 올바른 동작을 보장하는 데 도움이 되므로 매우 중요합니다. 동시 기능을 테스트할 때는 상호 배제, 동기화, 격리와 같은 기본 원칙을 고려해야 합니다. 동시 기능은 경쟁 조건을 시뮬레이션하고, 테스트하고, 결과를 확인하여 단위 테스트할 수 있습니다.

See all articles