PHP와 기계 학습: 지능형 추천 시스템을 구현하는 방법
PHP 및 기계 학습: 지능형 추천 시스템 구현 방법
소개:
인터넷의 발달과 함께 사람들은 정보를 얻고 상품을 구매하기 위해 점점 더 온라인 플랫폼에 의존하고 있습니다. 더 나은 사용자 경험을 제공하기 위해 많은 온라인 플랫폼에서 지능형 추천 시스템을 사용하기 시작했습니다. 지능형 추천 시스템은 과거 행동 및 선호도를 기반으로 사용자에게 개인화된 콘텐츠를 자동으로 추천할 수 있습니다. 이 기사에서는 PHP와 기계 학습 알고리즘을 사용하여 지능형 추천 시스템을 구현하는 방법을 소개합니다.
1. 데이터 수집 및 전처리:
지능형 추천 시스템 구현의 첫 번째 단계는 데이터를 수집하고 전처리하는 것입니다. 전자상거래 플랫폼에서는 사용자의 검색 기록, 구매 기록, 리뷰 등의 데이터가 수집될 수 있습니다. 정확성을 높이기 위해 지리적 위치, 사용자 속성 등과 같은 다른 요소 수집을 고려할 수도 있습니다. PHP에서는 MySQL과 같은 데이터베이스를 사용하여 이 데이터를 저장할 수 있습니다.
다음은 사용자 기록 데이터를 데이터베이스에 저장하기 위한 간단한 PHP 코드 예제입니다.
<?php // 连接数据库 $servername = "localhost"; $username = "username"; $password = "password"; $dbname = "database"; $conn = new mysqli($servername, $username, $password, $dbname); if ($conn->connect_error) { die("连接数据库失败: " . $conn->connect_error); } // 用户历史数据 $user_id = 1; // 用户ID $item_id = 1; // 商品ID // 将用户历史数据插入数据库 $sql = "INSERT INTO user_history (user_id, item_id) VALUES ('$user_id', '$item_id')"; if ($conn->query($sql) === TRUE) { echo "用户历史数据插入成功"; } else { echo "Error: " . $sql . "<br>" . $conn->error; } // 关闭数据库连接 $conn->close(); ?>
2. 기능 엔지니어링 및 알고리즘 선택:
지능형 추천 시스템에서 기능 엔지니어링은 중요한 단계입니다. 기능 엔지니어링은 원시 데이터를 기계 학습 알고리즘에 제공할 수 있는 기능으로 변환하는 것입니다. 일반적인 기능에는 사용자의 나이, 성별, 지리적 위치, 검색 기록, 구매 기록 등이 포함됩니다. 특징의 종류에 따라 원-핫 인코딩, 라벨 인코딩 등 다양한 인코딩 방법을 사용할 수 있습니다.
적절한 머신러닝 알고리즘을 선택하는 것도 지능형 추천 시스템 구현의 핵심입니다. 일반적으로 사용되는 알고리즘에는 협업 필터링, 콘텐츠 필터링, 연관 규칙 등이 포함됩니다. PHP에서 이러한 알고리즘은 PHP-ML 또는 PHP-ANN과 같은 기계 학습 라이브러리를 사용하여 구현할 수 있습니다.
다음은 협업 필터링 알고리즘 모델을 교육하기 위한 간단한 PHP 코드 예입니다.
<?php require 'vendor/autoload.php'; use PhpmlCollaborativeFilteringNeighborhood; use PhpmlCollaborativeFilteringRatingMatrix; use PhpmlMathMatrix; use PhpmlMathStatisticMean; // 用户评分矩阵 $ratings = new RatingMatrix([ [3, 4, 0, 3, 2], [4, 3, 1, 5, 5], [1, 2, 4, 0, 3], [4, 4, 0, 4, 2], ]); // 计算用户之间的相似度 $similarityMatrix = new Matrix($ratings->userSimilarities()); // 找到最相似的用户 $bestMatches = Neighborhood::findBestMatches($similarityMatrix->toArray(), 0); // 根据最相似的用户生成推荐 $user = 0; // 用户ID $recommendations = Neighborhood::userBased($user, $ratings->toArray(), $bestMatches, 3); // 输出推荐结果 echo "用户 " . $user . "的推荐结果:"; foreach ($recommendations as $item => $rating) { echo "商品 " . $item . ",评分:" . $rating . "<br>"; } ?>
3. 추천 모델의 최적화 및 평가:
추천 모델의 정확성과 성능을 향상시키기 위해 일부 최적화를 수행할 수 있습니다. . 예를 들어, 추천 결과를 조정하기 위해 사용자 선호도 가중치 및 시간 감소와 같은 요소를 도입할 수 있습니다. 또한 교차 검증과 같은 기술을 사용하여 모델 성능을 평가할 수 있습니다.
다음은 추천 모델의 교차 검증을 위한 간단한 PHP 코드 예입니다.
<?php require 'vendor/autoload.php'; use PhpmlCrossValidationCrossValidation; use PhpmlDatasetDemoWineDataset; use PhpmlMetricAccuracy; use PhpmlClassificationSVC; // 加载示例数据集 $dataset = new WineDataset(); // 划分数据集为训练集和测试集 $cv = new CrossValidation($dataset, $classifier = new SVC(), 5); // 计算模型的准确性 $accuracy = Accuracy::score($cv->getTestLabels(), $cv->getPredictedLabels()); // 输出准确性结果 echo "模型的准确性:" . $accuracy; ?>
결론:
PHP와 기계 학습 알고리즘의 결합을 통해 지능형 추천 시스템을 구현하고 개인화된 사용자 경험을 제공할 수 있습니다. 구현 과정에서는 데이터를 수집 및 전처리하고, 기능 엔지니어링을 수행하고, 적절한 기계 학습 알고리즘을 선택해야 합니다. 동시에 추천 모델을 최적화하고 교차 검증과 같은 기술을 사용하여 모델 성능을 평가할 수도 있습니다. 이 글이 지능형 추천 시스템을 구현하는 방법을 이해하는 데 도움이 되기를 바랍니다.
참조 자료:
- PHP-ML: https://github.com/php-ai/php-ml
- PHP-ANN: https://github.com/pear/PHP_Ann
위 내용은 PHP와 기계 학습: 지능형 추천 시스템을 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP 8.4는 상당한 양의 기능 중단 및 제거를 통해 몇 가지 새로운 기능, 보안 개선 및 성능 개선을 제공합니다. 이 가이드에서는 Ubuntu, Debian 또는 해당 파생 제품에서 PHP 8.4를 설치하거나 PHP 8.4로 업그레이드하는 방법을 설명합니다.

숙련된 PHP 개발자라면 이미 그런 일을 해왔다는 느낌을 받을 것입니다. 귀하는 상당한 수의 애플리케이션을 개발하고, 수백만 줄의 코드를 디버깅하고, 여러 스크립트를 수정하여 작업을 수행했습니다.

VS Code라고도 알려진 Visual Studio Code는 모든 주요 운영 체제에서 사용할 수 있는 무료 소스 코드 편집기 또는 통합 개발 환경(IDE)입니다. 다양한 프로그래밍 언어에 대한 대규모 확장 모음을 통해 VS Code는

JWT는 주로 신분증 인증 및 정보 교환을 위해 당사자간에 정보를 안전하게 전송하는 데 사용되는 JSON을 기반으로 한 개방형 표준입니다. 1. JWT는 헤더, 페이로드 및 서명의 세 부분으로 구성됩니다. 2. JWT의 작업 원칙에는 세 가지 단계가 포함됩니다. JWT 생성, JWT 확인 및 Parsing Payload. 3. PHP에서 인증에 JWT를 사용하면 JWT를 생성하고 확인할 수 있으며 사용자 역할 및 권한 정보가 고급 사용에 포함될 수 있습니다. 4. 일반적인 오류에는 서명 검증 실패, 토큰 만료 및 대형 페이로드가 포함됩니다. 디버깅 기술에는 디버깅 도구 및 로깅 사용이 포함됩니다. 5. 성능 최적화 및 모범 사례에는 적절한 시그니처 알고리즘 사용, 타당성 기간 설정 합리적,

이 튜토리얼은 PHP를 사용하여 XML 문서를 효율적으로 처리하는 방법을 보여줍니다. XML (Extensible Markup Language)은 인간의 가독성과 기계 구문 분석을 위해 설계된 다목적 텍스트 기반 마크 업 언어입니다. 일반적으로 데이터 저장 AN에 사용됩니다

문자열은 문자, 숫자 및 기호를 포함하여 일련의 문자입니다. 이 튜토리얼은 다른 방법을 사용하여 PHP의 주어진 문자열의 모음 수를 계산하는 방법을 배웁니다. 영어의 모음은 A, E, I, O, U이며 대문자 또는 소문자 일 수 있습니다. 모음이란 무엇입니까? 모음은 특정 발음을 나타내는 알파벳 문자입니다. 대문자와 소문자를 포함하여 영어에는 5 개의 모음이 있습니다. a, e, i, o, u 예 1 입력 : String = "Tutorialspoint" 출력 : 6 설명하다 문자열의 "Tutorialspoint"의 모음은 u, o, i, a, o, i입니다. 총 6 개의 위안이 있습니다

정적 바인딩 (정적 : :)는 PHP에서 늦은 정적 바인딩 (LSB)을 구현하여 클래스를 정의하는 대신 정적 컨텍스트에서 호출 클래스를 참조 할 수 있습니다. 1) 구문 분석 프로세스는 런타임에 수행됩니다. 2) 상속 관계에서 통화 클래스를 찾아보십시오. 3) 성능 오버 헤드를 가져올 수 있습니다.

PHP의 마법 방법은 무엇입니까? PHP의 마법 방법은 다음과 같습니다. 1. \ _ \ _ Construct, 객체를 초기화하는 데 사용됩니다. 2. \ _ \ _ 파괴, 자원을 정리하는 데 사용됩니다. 3. \ _ \ _ 호출, 존재하지 않는 메소드 호출을 처리하십시오. 4. \ _ \ _ get, 동적 속성 액세스를 구현하십시오. 5. \ _ \ _ Set, 동적 속성 설정을 구현하십시오. 이러한 방법은 특정 상황에서 자동으로 호출되어 코드 유연성과 효율성을 향상시킵니다.
