백엔드 개발 파이썬 튜토리얼 Celery를 사용하여 분산 작업 스케줄링을 구현하는 방법

Celery를 사용하여 분산 작업 스케줄링을 구현하는 방법

Aug 02, 2023 am 08:53 AM

如何使用Celery实现分布式任务调度

概述:
Celery是Python中最常用的分布式任务队列库之一,它可以用来实现异步任务调度。本文将介绍如何使用Celery来实现分布式任务调度,并附上代码示例。

  1. 安装与配置Celery

首先,我们需要安装Celery库。可以通过以下命令来安装Celery:

pip install celery
로그인 후 복사

安装完成后,我们需要创建一个Celery的配置文件。创建一个名为celeryconfig.py的文件,并添加以下内容:

broker_url = 'amqp://guest@localhost//'     # RabbitMQ服务器地址
result_backend = 'db+sqlite:///results.sqlite'   # 结果存储方式(使用SQLite数据库)
task_serializer = 'json'    # 任务序列化方式
result_serializer = 'json'  # 结果序列化方式
accept_content = ['json']   # 接受的内容类型
timezone = 'Asia/Shanghai'  # 时区设置
로그인 후 복사
  1. 创建Celery应用

在代码中,我们需要导入Celery库,并创建一个Celery应用。以下是一个示例:

from celery import Celery

app = Celery('mytasks', include=['mytasks.tasks'])
app.config_from_object('celeryconfig')
로그인 후 복사

在上面的代码中,我们创建了一个名为mytasks的Celery应用,并将celeryconfig.py中的配置应用到Celery应用中。

  1. 创建任务

接下来,我们需要创建一个任务。任务是一个独立的函数,可以执行单独的操作。以下是一个示例:

# tasks.py
from mytasks import app

@app.task
def add(x, y):
    return x + y
로그인 후 복사

在上面的代码中,我们定义了一个名为add的任务,用于计算两个数的和。

  1. 启动Celery Worker

要使任务能够分布式执行,我们需要启动一个或多个Celery Worker来处理任务。可以通过以下命令来启动Celery Worker:

celery -A mytasks worker --loglevel=info
로그인 후 복사

启动完成后,Celery Worker将会监听并处理队列中的任务。

  1. 提交任务

在其他代码中,我们可以提交任务到Celery队列中。以下是一个示例:

# main.py
from mytasks.tasks import add

result = add.delay(4, 6)
print(result.get())
로그인 후 복사

在上面的代码中,我们导入了之前定义的add任务,然后使用delay方法提交一个任务。delay方法将会返回一个AsyncResult对象,我们可以通过调用get方法来获取任务的结果。

  1. 监控任务完成状态

我们可以使用AsyncResult对象来监控任务的执行状态。以下是一个示例:

# main.py
from mytasks.tasks import add

result = add.delay(4, 6)
while not result.ready():
    print("Task is still running...")
    time.sleep(1)

print(result.get())
로그인 후 복사

在上面的代码中,我们通过循环来监控任务的执行状态。ready方法将返回任务是否已完成的布尔值。

总结:
本文简要介绍了如何使用Celery实现分布式任务调度。通过安装和配置Celery,创建Celery应用,定义任务,启动Celery Worker,并提交任务到队列中,我们可以实现分布式任务调度。使用Celery可以提高任务执行效率,适用于需要进行并行计算或异步处理的情况。

위 내용은 Celery를 사용하여 분산 작업 스케줄링을 구현하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Python을 사용하여 텍스트 파일의 ZIPF 배포를 찾는 방법 Mar 05, 2025 am 09:58 AM

이 튜토리얼은 Python을 사용하여 Zipf의 법칙의 통계 개념을 처리하는 방법을 보여주고 법을 처리 할 때 Python의 읽기 및 대형 텍스트 파일을 정렬하는 효율성을 보여줍니다. ZIPF 분포라는 용어가 무엇을 의미하는지 궁금 할 것입니다. 이 용어를 이해하려면 먼저 Zipf의 법칙을 정의해야합니다. 걱정하지 마세요. 지침을 단순화하려고 노력할 것입니다. Zipf의 법칙 Zipf의 법칙은 단순히 : 큰 자연어 코퍼스에서 가장 자주 발생하는 단어는 두 번째 빈번한 단어, 세 번째 빈번한 단어보다 세 번, 네 번째 빈번한 단어 등 4 배나 자주 발생합니다. 예를 살펴 보겠습니다. 미국 영어로 브라운 코퍼스를 보면 가장 빈번한 단어는 "TH입니다.

HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? HTML을 구문 분석하기 위해 아름다운 수프를 어떻게 사용합니까? Mar 10, 2025 pm 06:54 PM

이 기사에서는 HTML을 구문 분석하기 위해 파이썬 라이브러리 인 아름다운 수프를 사용하는 방법을 설명합니다. 데이터 추출, 다양한 HTML 구조 및 오류 처리 및 대안 (SEL과 같은 Find (), find_all (), select () 및 get_text ()와 같은 일반적인 방법을 자세히 설명합니다.

파이썬의 이미지 필터링 파이썬의 이미지 필터링 Mar 03, 2025 am 09:44 AM

시끄러운 이미지를 다루는 것은 특히 휴대폰 또는 저해상도 카메라 사진에서 일반적인 문제입니다. 이 튜토리얼은 OpenCV를 사용 하여이 문제를 해결하기 위해 Python의 이미지 필터링 기술을 탐구합니다. 이미지 필터링 : 강력한 도구 이미지 필터

Python을 사용하여 PDF 문서를 사용하는 방법 Python을 사용하여 PDF 문서를 사용하는 방법 Mar 02, 2025 am 09:54 AM

PDF 파일은 운영 체제, 읽기 장치 및 소프트웨어 전체에서 일관된 콘텐츠 및 레이아웃과 함께 크로스 플랫폼 호환성에 인기가 있습니다. 그러나 Python Processing Plain Text 파일과 달리 PDF 파일은 더 복잡한 구조를 가진 이진 파일이며 글꼴, 색상 및 이미지와 같은 요소를 포함합니다. 다행히도 Python의 외부 모듈로 PDF 파일을 처리하는 것은 어렵지 않습니다. 이 기사는 PYPDF2 모듈을 사용하여 PDF 파일을 열고 페이지를 인쇄하고 텍스트를 추출하는 방법을 보여줍니다. PDF 파일의 생성 및 편집에 대해서는 저의 다른 튜토리얼을 참조하십시오. 준비 핵심은 외부 모듈 PYPDF2를 사용하는 데 있습니다. 먼저 PIP를 사용하여 설치하십시오. PIP는 p입니다

Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Django 응용 프로그램에서 Redis를 사용하여 캐시하는 방법 Mar 02, 2025 am 10:10 AM

이 튜토리얼은 Redis 캐싱을 활용하여 특히 Django 프레임 워크 내에서 Python 응용 프로그램의 성능을 향상시키는 방법을 보여줍니다. 우리는 Redis 설치, Django 구성 및 성능 비교를 다루어 Bene을 강조합니다.

Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Tensorflow 또는 Pytorch로 딥 러닝을 수행하는 방법은 무엇입니까? Mar 10, 2025 pm 06:52 PM

이 기사는 딥 러닝을 위해 텐서 플로와 Pytorch를 비교합니다. 데이터 준비, 모델 구축, 교육, 평가 및 배포와 관련된 단계에 대해 자세히 설명합니다. 프레임 워크, 특히 계산 포도와 관련하여 주요 차이점

파이썬에서 자신의 데이터 구조를 구현하는 방법 파이썬에서 자신의 데이터 구조를 구현하는 방법 Mar 03, 2025 am 09:28 AM

이 튜토리얼은 Python 3에서 사용자 정의 파이프 라인 데이터 구조를 작성하여 클래스 및 작업자 과부하를 활용하여 향상된 기능을 보여줍니다. 파이프 라인의 유연성은 일련의 기능을 데이터 세트, GE에 적용하는 능력에 있습니다.

파이썬의 병렬 및 동시 프로그래밍 소개 파이썬의 병렬 및 동시 프로그래밍 소개 Mar 03, 2025 am 10:32 AM

데이터 과학 및 처리가 가장 좋아하는 Python은 고성능 컴퓨팅을위한 풍부한 생태계를 제공합니다. 그러나 Python의 병렬 프로그래밍은 독특한 과제를 제시합니다. 이 튜토리얼은 이러한 과제를 탐구하며 전 세계 해석에 중점을 둡니다.

See all articles