Python은 XML의 시간 및 날짜 데이터를 구문 분석합니다.
Python은 시간과 날짜 데이터를 XML로 구문 분석합니다
데이터 분석 및 처리 과정에서 XML 파일의 특정 데이터를 구문 분석해야 하는 경우가 종종 있습니다. 그 중 시간 및 날짜 데이터는 일반적인 요구 사항 중 하나입니다. 이 기사에서는 코드 예제와 함께 Python을 사용하여 XML의 시간 및 날짜 데이터를 구문 분석하는 방법을 소개합니다.
XML 파일에는 일반적으로 복잡한 구조와 중첩된 데이터가 포함되어 있습니다. XML을 구문 분석하기 전에 XML 파일을 메모리에 로드해야 합니다. Python은 ElementTree 및 lxml과 같은 XML 구문 분석을 위한 많은 라이브러리를 제공합니다. 이 기사에서는 ElementTree 라이브러리를 사용하여 XML을 구문 분석합니다.
먼저 ElementTree 라이브러리를 설치해야 합니다. 다음 명령과 함께 pip를 사용하여 설치할 수 있습니다:
pip install xml.etree.ElementTree
다음으로, 예제로 간단한 XML 파일을 만듭니다. 파일 내용은 다음과 같습니다.
<data> <item> <name>John</name> <dob>1990-05-20</dob> <time>06:30:00</time> </item> <item> <name>Jane</name> <dob>1985-12-01</dob> <time>14:45:30</time> </item> </data>
위 XML 파일에는 두 개의 항목 노드가 포함되어 있습니다. 각 노드에는 각각 이름, 생년월일 및 시간을 나타내는 이름 요소, dob 요소 및 시간 요소가 포함되어 있습니다.
다음으로 Python을 사용하여 XML 파일을 구문 분석하고 시간 및 날짜 데이터를 추출할 수 있습니다. 코드는 다음과 같습니다.
import xml.etree.ElementTree as ET # 加载XML文件 tree = ET.parse('data.xml') root = tree.getroot() # 遍历item节点 for item in root.findall('item'): name = item.find('name').text dob = item.find('dob').text time = item.find('time').text # 输出姓名、出生日期和时间 print("姓名:", name) print("出生日期:", dob) print("时间:", time)
위 코드를 실행하면 출력은 다음과 같습니다.
姓名: John 出生日期: 1990-05-20 时间: 06:30:00 姓名: Jane 出生日期: 1985-12-01 时间: 14:45:30
보시다시피 XML 파일의 시간 및 날짜 데이터를 성공적으로 구문 분석했습니다.
실제 응용 프로그램에서는 시차 계산, 시간 형식 지정 등과 같이 시간과 날짜에 대한 추가 작업을 수행해야 할 수도 있습니다. Python은 시간 및 날짜 관련 작업을 처리하기 위해 datetime 모듈을 제공합니다. 후속 작업을 위해 구문 분석된 시간 및 날짜 데이터를 datetime 객체로 변환할 수 있습니다. 다음은 샘플 코드입니다.
import xml.etree.ElementTree as ET from datetime import datetime # 加载XML文件 tree = ET.parse('data.xml') root = tree.getroot() # 遍历item节点 for item in root.findall('item'): name = item.find('name').text dob = item.find('dob').text time = item.find('time').text # 将日期和时间转换为datetime对象 dob_date = datetime.strptime(dob, "%Y-%m-%d") time_date = datetime.strptime(time, "%H:%M:%S") # 输出姓名、转换后的日期和时间 print("姓名:", name) print("出生日期:", dob_date) print("时间:", time_date)
위 코드를 실행하면 출력은 다음과 같습니다.
姓名: John 出生日期: 1990-05-20 00:00:00 时间: 1900-01-01 06:30:00 姓名: Jane 出生日期: 1985-12-01 00:00:00 时间: 1900-01-01 14:45:30
위 코드에서는 datetime.strptime() 함수를 사용하여 날짜와 시간을 datetime 객체로 변환합니다. 필요에 따라 다양한 형식 문자열을 사용하여 날짜 및 시간 형식을 지정할 수 있습니다.
위의 코드 예제를 통해 Python을 사용하여 XML의 시간 및 날짜 데이터를 구문 분석하는 방법을 배웠습니다. 이는 복잡한 구조적 및 시간적 데이터가 포함된 XML 파일을 처리하는 데 유용합니다. 데이터 분석, 데이터 처리 또는 기타 관련 애플리케이션 시나리오를 수행하는 경우 XML의 시간 및 날짜 데이터를 구문 분석하는 방법을 아는 것은 매우 유용합니다.
위 내용은 Python은 XML의 시간 및 날짜 데이터를 구문 분석합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos의 최신 버전으로 Pytorch를 업데이트하면 다음 단계를 수행 할 수 있습니다. 방법 1 : PIP를 사용하여 PIP 업데이트 : 먼저 PIP의 PIP 버전이 최신 버전의 PyTorch를 제대로 설치하지 못할 수 있기 때문에 PIP가 최신 버전인지 확인하십시오. PipinStall-UpgradePip Unin Incalls of Pytorch (설치된 경우) : PipuninStalltorchtorchvisiontorchaudio 설치 최신 정보

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.
