이번 호에서는 Python의 pyecharts 시각화 라이브러리를 사용하여 베이징의 과거 기상 데이터를 그리고 역사적 최고 기온, 과거 최저 기온 분포, 풍력 발전에 대해 살펴봅니다. 낮과 밤의 방향과 배포 및 기타 상황, 모든 분들께 도움이 되기를 바랍니다. 궁금한 점이나 개선이 필요한 부분이 있으면 편집자에게 문의하세요.
관련 라이브러리:
Pandas — 데이터 처리
Pyecharts — 데이터 시각화
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Scatter from pyecharts.charts import Pie from pyecharts.charts import EffectScatter from pyecharts.charts import Calendar from pyecharts.charts import Polar from pyecharts import options as opts import warnings warnings.filterwarnings('ignore')
df_weather_1 = df_weather.copy() df_weather_1[['最低气温','最高气温']] = df_weather_1['最低气温/最高气温'].str.split(' / ',expand=True) df_weather_1['最低气温'] = df_weather_1['最低气温'].str[:-2] df_weather_1['最高气温'] = df_weather_1['最高气温'].str[:-1] df_weather_1['最低气温'] = df_weather_1['最低气温'].astype('int') df_weather_1['最高气温'] = df_weather_1['最高气温'].astype('int')
2.3 处理日期数据
df_weather_1['日期'] = pd.to_datetime(df_weather_1['日期'],format='%Y年%m月%d日') df_weather_1['日期s'] = df_weather_1['日期'].dt.strftime('%Y/%m/%d')
def get_scatter(): scatter = ( Scatter() .add_xaxis(x_data) .add_yaxis("最低气温", y_data1) .add_yaxis("最高气温", y_data2) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), title_opts=opts.TitleOpts( title='1-2018-2022年历史温度分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ) ) )
def get_calendar(): calendar = ( Calendar() .add('', data_21, calendar_opts=opts.CalendarOpts( pos_right='5%', range_='2021', daylabel_opts=opts.CalendarDayLabelOpts(name_map='cn'), monthlabel_opts=opts.CalendarMonthLabelOpts(name_map='cn') ), ) .set_global_opts( title_opts=opts.TitleOpts( title='3-2021年历史温度分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), visualmap_opts=opts.VisualMapOpts( range_color=range_color, ) ) )
3.5 2022年夜间_白天风力分布
def get_pie(): pie = ( Pie() .add( "", [list(z) for z in zip(x_data, y_data1)], radius=["30%", "50%"], center=["30%", "55%"], ) .add( "", [list(z) for z in zip(x_data, y_data2)], radius=["30%", "50%"], center=["70%", "55%"], ) .set_global_opts( title_opts=opts.TitleOpts( title='5-2022年夜间_白天风力分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), legend_opts=opts.LegendOpts(pos_top='10%'), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), ) )
def get_polor(): polor = ( Polar() .add("", values,type_="bar") .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), title_opts=opts.TitleOpts( title='6-2022年夜间风向分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), ) )
3.7 2022年白天风向分布
3.8 2018-2022年各类型天气数量
def get_bar(): bar = ( Bar() .add_xaxis(x_data) .add_yaxis("",y_data) .set_global_opts( visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts( title='8-2018-2022年各类型天气数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), ) )
3.9 2018-2022年每月平均最高温度
위 내용은 Pandas+Pyecharts | 지난 5년간 베이징의 과거 날씨 데이터 시각화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!