Pandas+Pyecharts 병원 약품 판매 데이터 시각화
Pandas — 데이터 처리
Pyecharts — 데이터 시각화
컬렉션 — 데이터 통계
시각화 부분:
Line — 꺾은선형 차트 Bar — 막대형 차트 -
Calendar— 달력 stylecloud — 워드 클라우드
본론으로 들어가죠~~
P andas 데이터 처리import jieba import stylecloud import pandas as pd from PIL import Image from collections import Counter from pyecharts.charts import Geo from pyecharts.charts import Bar from pyecharts.charts import Line from pyecharts.charts import Pie from pyecharts.charts import Calendar from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType,SymbolType,ChartType
df = pd.read_excel("医院药品销售数据.xlsx")
df.shape
6578
의약품 구매 데이터.2.3 查看索引、数据类型和内存信息 2.4 统计空值数据 2.5 输出空行 2.6 销售数量,应收金额,实收金额三列的统计情况 2.7 列拆分(购药时间列拆分为两列) 代码: 每天销量整理相差不大,周五、周六偏于购药高峰。 代码: 可以看出:苯磺 酸氨氯地平片(安内真)、开博通、酒石酸美托洛尔片(倍他乐克)等治疗高血压、心绞痛药物购买量比较多。。 3.6 약명 워드 클라우드
공간 때문에 일부 코드가 완전히 표시되지 않습니다. 필요한 경우 아래에서 온라인으로 실행할 수도 있습니다(모든 코드 + 데이터 파일 포함) : https://www.heywhale.com/mw/project/61b83bd9c63c620017c629bcdf.info()
部分列存在数据缺失。
df.isnull().sum()
df[df.isnull().T.any()]
df1 = df.copy()
df1 = df1.dropna(subset=['购药时间'])
df1[df1.isnull().T.any()]
df1['社保卡号'].fillna('0000', inplace=True)
df1['社保卡号'] = df1['社保卡号'].astype(str)
df1['商品编码'] = df1['商品编码'].astype(str)
df1['销售数量'] = df1['销售数量'].astype(int)
df1[['销售数量','应收金额','实收金额']].describe()
df2 = df1.copy()
df2['销售数量'] = df2['销售数量'].abs()
df2['应收金额'] = df2['应收金额'].abs()
df2['实收金额'] = df2['实收金额'].abs()
df3 = df2.copy()
df3[['购药日期', '星期']] = df3['购药时间'].str.split(' ', 2, expand = True)
df3 = df3[['购药日期', '星期','社保卡号','商品编码', '商品名称', '销售数量', '应收金额', '实收金额' ]]
color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
[{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#ed1941'}], false)"""
g1 = df3.groupby('星期').sum()
x_data = list(g1.index)
y_data = g1['销售数量'].values.tolist()
b1 = (
Bar()
.add_xaxis(x_data)
.add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
.set_global_opts(title_opts=opts.TitleOpts(title='一周各天药品销量',pos_top='2%',pos_left = 'center'),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))
)
b1.render_notebook()
color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
[{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#08519c'}], false)"""
g2 = df3.groupby('商品名称').sum().sort_values(by='销售数量', ascending=False)
x_data = list(g2.index)[:10]
y_data = g2['销售数量'].values.tolist()[:10]
b2 = (
Bar()
.add_xaxis(x_data)
.add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
.set_global_opts(title_opts=opts.TitleOpts(title='药品销量前十',pos_top='2%',pos_left = 'center'),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))
)
b2.render_notebook()
위 내용은 Pandas+Pyecharts 병원 약품 판매 데이터 시각화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

데비안 시스템의 readdir 함수는 디렉토리 컨텐츠를 읽는 데 사용되는 시스템 호출이며 종종 C 프로그래밍에 사용됩니다. 이 기사에서는 ReadDir를 다른 도구와 통합하여 기능을 향상시키는 방법을 설명합니다. 방법 1 : C 언어 프로그램을 파이프 라인과 결합하고 먼저 C 프로그램을 작성하여 readDir 함수를 호출하고 결과를 출력하십시오.#포함#포함#포함#포함#includinTmain (intargc, char*argv []) {dir*dir; structdirent*entry; if (argc! = 2) {

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

데비안 시스템에서 HTTPS 서버를 구성하려면 필요한 소프트웨어 설치, SSL 인증서 생성 및 SSL 인증서를 사용하기 위해 웹 서버 (예 : Apache 또는 Nginx)를 구성하는 등 여러 단계가 포함됩니다. 다음은 Apacheweb 서버를 사용하고 있다고 가정하는 기본 안내서입니다. 1. 필요한 소프트웨어를 먼저 설치하고 시스템이 최신 상태인지 확인하고 Apache 및 OpenSSL을 설치하십시오 : Sudoaptupdatesudoaptupgradesudoaptinsta

데비안에서 gitlab 플러그인을 개발하려면 몇 가지 특정 단계와 지식이 필요합니다. 다음은이 과정을 시작하는 데 도움이되는 기본 안내서입니다. Gitlab을 먼저 설치하려면 Debian 시스템에 Gitlab을 설치해야합니다. Gitlab의 공식 설치 매뉴얼을 참조 할 수 있습니다. API 액세스 토큰을 얻으십시오 API 통합을 수행하기 전에 Gitlab의 API 액세스 토큰을 먼저 가져와야합니다. Gitlab 대시 보드를 열고 사용자 설정에서 "AccessTokens"옵션을 찾은 다음 새 액세스 토큰을 생성하십시오. 생성됩니다

아파치는 인터넷 뒤의 영웅입니다. 웹 서버 일뿐 만 아니라 큰 트래픽을 지원하고 동적 콘텐츠를 제공하는 강력한 플랫폼이기도합니다. 모듈 식 설계를 통해 매우 높은 유연성을 제공하여 필요에 따라 다양한 기능을 확장 할 수 있습니다. 그러나 Modularity는 또한 신중한 관리가 필요한 구성 및 성능 문제를 제시합니다. Apache는 사용자 정의가 필요한 서버 시나리오에 적합하고 복잡한 요구를 충족시킵니다.

Apache는 C로 작성되었습니다. 언어는 속도, 안정성, 이식성 및 직접 하드웨어 액세스를 제공하여 웹 서버 개발에 이상적입니다.

PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.
