차트를 그리려면 기본 색상 및 형식 테마는 그리기 기능에 익숙해지는 데에만 도움이 될 수 있지만 뛰어난 시각화 작품(출판 수준이든 약간 예술적이든)을 디자인하려면 많은 주제에 익숙해져야 합니다. 색상, 배율, 축, 글꼴 등과 같은 그리기 기능을 여러 하위 플롯으로 그릴 때 이러한 작업은 코드 작성 시간을 늘리지 않고도 많은 에너지를 소모하며 오류가 발생하기 쉽습니다. 자세한 내용은 이전 기사 Python-matplotlib Academic Scatter Chart EE 통계 및 그리기 및 Python-matplotlib 가로 누적 세로 막대형 차트 그리기를 확인하세요. 또한 매일 그림을 그리기 위해 matplotlib를 사용해야 하고 종종 차트를 아름답게 해야 하는 경우 Proplot 그리기 패키지가 적합하며 이에 적응하지 못할까 봐 걱정하지 마세요. , 이는 그리기 기능을 크게 단순화합니다. 아래에서는 설치 및 주요 사용방법에 대해 간략히 소개하겠습니다. 더 자세한 내용을 알고 싶으시면 공식 홈페이지를 방문하시면 됩니다.
pip이나 conda을 이용하여 직접 설치할 수도 있고,
#for pip pip install proplot #for conda conda install -c conda-forge proplot
물론 지속적인 버전 업데이트로 인해 업데이트 처리를 위해 다음 코드를 사용할 수도 있습니다. :
#for pip pip install --upgrade proplot #for conda conda upgrade proplot
Proplot은 matplotlib처럼 모든 플롯 속성을 설정할 필요가 없습니다. format() 함수는 모든 설정을 한 번에 변경할 수 있는 형식 지정 방법을 제공합니다. 먼저 다음과 같은 간단한 예를 들어보겠습니다.
import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib as mpl with mpl.rc_context(rc={'axes.linewidth': 1, 'axes.color': 'gray'}): fig, axs = plt.subplots(ncols=2, sharey=True) axs[0].set_ylabel('bar', color='gray') for ax in axs: ax.set_xlim(0, 100) ax.xaxis.set_major_locator(mticker.MultipleLocator(10)) ax.tick_params(width=1, color='gray', labelcolor='gray') ax.tick_params(axis='x', which='minor', bottom=True) ax.set_xlabel('foo', color='gray')
import proplot as plot fig, axs = plot.subplots(ncols=2) axs.format(linewidth=1, color='gray') axs.format(xlim=(0, 100), xticks=10, xtickminor=True, xlabel='foo', ylabel='bar')
이 간단한 예에서 Proplot의 단순성을 확인할 수 있습니다.
코드 양을 크게 줄여주는 위의 format() 외에도 더 편리하다고 생각되는 그리기 방법을 소개했습니다 - 여러 개의 하위 사진 일련번호가 자동으로 추가됩니다. 구체적인 예는 다음과 같습니다.
# 样本数据 import numpy as np state = np.random.RandomState(51423) data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0) import proplot as plot fig, axs = plot.subplots(ncols=2) axs[0].plot(data, lw=2) axs[0].format(xticks=20, xtickminor=False) axs.format(abc=True,abcstyle='(A)',abcsize=12,abcloc='ul', suptitle='Abc label test', title='Title', xlabel='x axis', ylabel='y axis' ) plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\abc_01.png', dpi=900)
효과는 다음과 같습니다.
일련번호에 대한 스타일(abcstyle), 위치(abcloc), 크기(abcsize) 등을 설정할 수도 있습니다. 기타 자세한 설정은 공식 홈페이지를 참고해주세요.
import proplot as plot import numpy as np fig, axs = plot.subplots(nrows=2, share=0, axwidth='55mm', panelpad='1em') axs.format(suptitle='Stacked colorbars demo') state = np.random.RandomState(51423) N = 10 # Repeat for both axes for j, ax in enumerate(axs): ax.format( xlabel='data', xlocator=np.linspace(0, 0.8, 5), title=f'Subplot #{j+1}' ) for i, (x0, y0, x1, y1, cmap, scale) in enumerate(( (0, 0.5, 1, 1, 'grays', 0.5), (0, 0, 0.5, 0.5, 'reds', 1), (0.5, 0, 1, 0.5, 'blues', 2) )): if j == 1 and i == 0: continue data = state.rand(N, N) * scale x, y = np.linspace(x0, x1, N + 1), np.linspace(y0, y1, N + 1) m = ax.pcolormesh( x, y, data, cmap=cmap, levels=np.linspace(0, scale, 11) ) ax.colorbar(m, loc='l', label=f'dataset #{i+1}') plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\colorbar_legend_02.png', dpi=900)
효과는 다음과 같습니다.
import proplot as plot import numpy as np fig, axs = plot.subplots(ncols=3, nrows=3, axwidth=1.4) state = np.random.RandomState(51423) m = axs.pcolormesh( state.rand(20, 20), cmap='grays', levels=np.linspace(0, 1, 11), extend='both' )[0] axs.format( suptitle='Figure colorbars and legends demo', abc=True, abcloc='l', abcstyle='(a)', xlabel='xlabel', ylabel='ylabel' ) fig.colorbar(m, label='column 1', ticks=0.5, loc='b', col=1) fig.colorbar(m, label='columns 2-3', ticks=0.2, loc='b', cols=(2, 3)) fig.colorbar(m, label='stacked colorbar', ticks=0.1, loc='b', minorticks=0.05) fig.colorbar(m, label='colorbar with length <1', ticks=0.1, loc='r', length=0.7)
效果如下:
import proplot as plot import numpy as np plot.rc.update( linewidth=1.2, fontsize=10, ticklenratio=0.7, figurefacecolor='w', facecolor='pastel blue', titleloc='upper center', titleborder=False, ) fig, axs = plot.subplots(nrows=5, axwidth=6, aspect=(8, 1), share=0) axs[:4].format(xrotation=0) # no rotation for these examples # Default date locator # This is enabled if you plot datetime data or set datetime limits axs[0].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2001-01-02')), title='Auto date locator and formatter' ) # Concise date formatter introduced in matplotlib 3.1 axs[1].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2001-01-01')), xformatter='concise', title='Concise date formatter', ) # Minor ticks every year, major every 10 years axs[2].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2050-01-01')), xlocator=('year', 10), xformatter='\'%y', title='Ticks every N units', ) # Minor ticks every 10 minutes, major every 2 minutes axs[3].format( xlim=(np.datetime64('2000-01-01T00:00:00'), np.datetime64('2000-01-01T12:00:00')), xlocator=('hour', range(0, 24, 2)), xminorlocator=('minute', range(0, 60, 10)), xformatter='T%H:%M:%S', title='Ticks at specific intervals', ) # Month and year labels, with default tick label rotation axs[4].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2008-01-01')), xlocator='year', xminorlocator='month', # minor ticks every month xformatter='%b %Y', title='Ticks with default rotation', ) axs.format( ylocator='null', suptitle='Datetime locators and formatters demo' ) plot.rc.reset() plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\datetick.png', dpi=900)
效果如下:
以上是我认为ProPlot 比较优秀的几点,当然,大家也可以自行探索,发现自己喜欢的技巧。
我们使用之前的推文数据进行实例操作,详细代码如下:
#开始绘图 labels = ['L1', 'L2', 'L3', 'L4', 'L5'] data_a = [20, 34, 30, 35, 27] data_b = [25, 32, 34, 20, 25] data_c = [12, 20, 24, 17, 16] x = np.arange(len(labels)) width = .25 fig, axs = plot.subplots(ncols=2, nrows=1, sharey=1, width=10,height=4) #for mark, data in zip() axs[0].plot(x,y1, marker='s',c='k',lw=.5,label='D1',markersize=8) axs[0].plot(x,y2, marker='s',c='k',ls='--',lw=.5,markersize=8,markerfacecolor='white',markeredgewidth=.4,label='D2') axs[0].plot(x,y3,marker='^',c='k',lw=.5,markersize=8,markerfacecolor='dimgray',markeredgecolor='dimgray', label='D3') axs[0].plot(x,y4,marker='^',c='k',lw=.5,markersize=8,label='D4') axs[1].bar(x-width/2, data_a,width,label='category_A',color='#130074',ec='black',lw=.5) axs[1].bar(x+width/2, data_b, width,label='category_B',color='#CB181B',ec='black',lw=.5) axs[1].bar(x+width*3/2, data_c,width,label='category_C',color='#008B45',ec='black',lw=.5) #先对整体进行设置 axs.format(ylim=(0,40), xlabel='', ylabel='Values', abc=True, abcloc='ur', abcstyle='(A)',abcsize=13, suptitle='ProPlot Exercise' ) #再对每个子图进行设置 axs[0].format(ylim=(10,40),title='Multi-category scatter plot') axs[1].format(title='Multi-category bar plot',xticklabels=['L1', 'L2', 'L3', 'L4', 'L5']) plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\test_01.png', dpi=900) plt.show()
效果如下:
只是简单的绘制,其他的设置也需要熟悉绘图函数,这里就给大家做个简单的演示。
本期推文我们介绍了matplotlib非常优秀的科学图表绘图库PrpPlot, 在一定程度上极大了缩减了定制化绘制时间,感兴趣的同学可以持续关注这个库,当然,还是最好在熟悉matplotlib基本绘图函数及图层属性设置函数的基础上啊。
위 내용은 Matplotlib의 번거로운 레이어 설정이 아직도 짜증나네요! ? 와서 이 Python 그리기 도구 키트를 살펴보세요.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!