면접관: 수천만 개의 데이터를 빠르게 쿼리하는 방법은 무엇입니까?
먼저 인터뷰 장면을 살펴보겠습니다.
인터뷰어: 천만 개의 데이터에 대해 이야기해 볼까요? 어떻게 쿼리하셨나요? 형: 페이징으로 직접 쿼리하고, 리미트 페이징을 사용하세요. 인터뷰어: 실제로 해본 적 있나요? 형: 하나쯤 있을 텐데
수천만 개의 데이터가 있는 테이블을 한 번도 본 적이 없고, 수천만 개의 데이터를 쿼리하면 어떤 일이 일어날지 모르는 친구도 있을 것입니다.
오늘은 실습을 통해 안내해드리겠습니다. 이번에는 MySQL 5.7.26 테스트용 버전
데이터 준비
데이터가 1000만개도 안되면 어떻게 해야 할까요? ?
만들기
1천만개를 만드는 코드? 그것은 불가능하고 너무 느리며 하루 종일 걸릴 수도 있습니다. 데이터베이스 스크립트를 사용하면 훨씬 빠르게 실행할 수 있습니다.
Create table
CREATE TABLE `user_operation_log` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `ip` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `op_data` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr1` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr3` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr4` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr5` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr6` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr7` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr8` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr9` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr10` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr11` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr12` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
Create data script
일괄 삽입을 사용하면 효율성이 훨씬 빨라지고, 1000개 항목마다 커밋되는 데이터 양이 너무 많아 일괄 삽입 효율성도 느려집니다
DELIMITER ;; CREATE PROCEDURE batch_insert_log() BEGIN DECLARE i INT DEFAULT 1; DECLARE userId INT DEFAULT 10000000; set @execSql = 'INSERT INTO `test`.`user_operation_log`(`user_id`, `ip`, `op_data`, `attr1`, `attr2`, `attr3`, `attr4`, `attr5`, `attr6`, `attr7`, `attr8`, `attr9`, `attr10`, `attr11`, `attr12`) VALUES'; set @execData = ''; WHILE i<=10000000 DO set @attr = "'测试很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长的属性'"; set @execData = concat(@execData, "(", userId + i, ", '10.0.69.175', '用户登录操作'", ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ")"); if i % 1000 = 0 then set @stmtSql = concat(@execSql, @execData,";"); prepare stmt from @stmtSql; execute stmt; DEALLOCATE prepare stmt; commit; set @execData = ""; else set @execData = concat(@execData, ","); end if; SET i=i+1; END WHILE; END;; DELIMITER ;
开始测试
田哥的电脑配置比较低:win10 标压渣渣i5 读写约500MB的SSD
由于配置低,本次测试只准备了3148000条数据,占用了磁盘5G(还没建索引的情况下),跑了38min,电脑配置好的同学,可以插入多点数据测试
SELECT count(1) FROM `user_operation_log`
返回结果:3148000
三次查询时间分别为:
14060 ms 13755 ms 13447 ms
普通分页查询
MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取。
MySQL分页查询语法如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
第一个参数指定第一个返回记录行的偏移量 第二个参数指定返回记录行的最大数目
下面我们开始测试查询结果:
SELECT * FROM `user_operation_log` LIMIT 10000, 10
查询3次时间分别为:
59 ms 49 ms 50 ms
这样看起来速度还行,不过是本地数据库,速度自然快点。
换个角度来测试
相同偏移量,不同数据量
SELECT * FROM `user_operation_log` LIMIT 10000, 10 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 1000 SELECT * FROM `user_operation_log` LIMIT 10000, 10000 SELECT * FROM `user_operation_log` LIMIT 10000, 100000 SELECT * FROM `user_operation_log` LIMIT 10000, 1000000
查询时间如下:
수량 | 첫 번째 | 두 번째 | 세 번째 |
---|---|---|---|
10개 항목 | 53ms | 52ms | 47ms |
100개 항목 | 50ms | 60ms | 55ms |
1000개 항목 | 61ms | 74ms | 60ms |
10000개 항목 | 164ms | 180ms | 217ms |
100000개 항목 | 1609ms | 1741ms | 1764ms |
1000000개 항목 | 16219ms | 16889ms | 17081ms |
위 결과에서 다음과 같은 결론을 내릴 수 있습니다. 데이터 양이 많을수록 시간이 오래 걸립니다
相同数据量,不同偏移量
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT * FROM `user_operation_log` LIMIT 1000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 100000, 100 SELECT * FROM `user_operation_log` LIMIT 1000000, 100
偏移量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
100 | 36ms | 40ms | 36ms |
1000 | 31ms | 38ms | 32ms |
10000 | 53ms | 48ms | 51ms |
100000 | 622ms | 576ms | 627ms |
1000000 | 4891ms | 5076ms | 4856ms |
从上面结果可以得出结束:偏移量越大,花费时间越长
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT id, attr FROM `user_operation_log` LIMIT 100, 100
如何优化
既然我们经过上面一番的折腾,也得出了结论,针对上面两个问题:偏移大、数据量大,我们分别着手优化
优化偏移量大问题
采用子查询方式
我们可以先定位偏移位置的 id,然后再查询数据
SELECT * FROM `user_operation_log` LIMIT 1000000, 10 SELECT id FROM `user_operation_log` LIMIT 1000000, 1 SELECT * FROM `user_operation_log` WHERE id >= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1) LIMIT 10
查询结果如下:
sql | 시간이 걸립니다 |
---|---|
첫 번째 | 4818ms |
두 번째(색인 없음) | 4329ms |
제2조(색인 포함) ) | 199ms |
세 번째 기사(색인 없음) | 4319ms |
세 번째 기사(색인 있음) | 201ms |
从上面结果得出结论:
第一条花费的时间最大,第三条比第一条稍微好点 子查询使用索引速度更快
缺点:只适用于id递增的情况
id非递增的情况可以使用以下写法,但这种缺点是分页查询只能放在子查询里面
注意:某些 mysql 版本不支持在 in 子句中使用 limit,所以采用了多个嵌套select
SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)
采用 id 限定方式
这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下
SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100 SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 22ms |
第二条 | 21ms |
从结果可以看出这种方式非常快
注意:这里的 LIMIT 是限制了条数,没有采用偏移量
优化数据量大问题
返回结果的数据量也会直接影响速度
SELECT * FROM `user_operation_log` LIMIT 1, 1000000 SELECT id FROM `user_operation_log` LIMIT 1, 1000000 SELECT id, user_id, ip, op_data, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11, attr12 FROM `user_operation_log` LIMIT 1, 1000000
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 15676ms |
第二条 | 7298ms |
第三条 | 15960ms |
불필요한 열을 줄이면 쿼리 효율성도 크게 향상될 수 있다는 것을 결과에서 알 수 있습니다.
첫 번째와 세 번째 쿼리 속도는 거의 동일합니다. 이때 분명히 불만이 있을 것입니다. 필드를 너무 많이 작성하면 *만 하면 끝입니다
MySQL 서버와 클라이언트가 동일한 컴퓨터에 있으므로 자격을 갖춘 학생은 클라이언트와 MySQL을 별도로 테스트할 수 있습니다.
SELECT * 그렇습니다. 아니 냄새가 좋은데?
그런데 SELECT *를 금지해야 하는 이유를 추가하고 싶습니다. 간단하고 정신없어서 맛있는거 아닌가요?
두 가지 주요 사항:
"SELECT *"를 사용하면 데이터베이스에서 더 많은 개체, 필드, 권한, 속성 및 기타 관련 콘텐츠를 구문 분석해야 합니다. SQL 문이 복잡하고 하드 구문 분석이 많으면 작업이 많이 수행됩니다. 데이터베이스 부담이 손상되었습니다. 네트워크 오버헤드가 증가합니다. * 때로는 로그, IconMD5 등 쓸모없고 큰 텍스트 필드가 실수로 추가되어 데이터 전송 크기가 기하급수적으로 증가합니다. 특히 MySQL과 애플리케이션이 동일한 시스템에 있지 않기 때문에 이러한 오버헤드는 매우 분명합니다.
End
마지막으로, 직접 연습해 보시면 확실히 더 많은 것을 얻으실 수 있기를 바랍니다!
위 내용은 면접관: 수천만 개의 데이터를 빠르게 쿼리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











다음 단계를 통해 phpmyadmin을 열 수 있습니다. 1. 웹 사이트 제어판에 로그인; 2. phpmyadmin 아이콘을 찾고 클릭하십시오. 3. MySQL 자격 증명을 입력하십시오. 4. "로그인"을 클릭하십시오.

MySQL은 오픈 소스 관계형 데이터베이스 관리 시스템으로, 주로 데이터를 신속하고 안정적으로 저장하고 검색하는 데 사용됩니다. 작업 원칙에는 클라이언트 요청, 쿼리 해상도, 쿼리 실행 및 반환 결과가 포함됩니다. 사용의 예로는 테이블 작성, 데이터 삽입 및 쿼리 및 조인 작업과 같은 고급 기능이 포함됩니다. 일반적인 오류에는 SQL 구문, 데이터 유형 및 권한이 포함되며 최적화 제안에는 인덱스 사용, 최적화 된 쿼리 및 테이블 분할이 포함됩니다.

데이터베이스 및 프로그래밍에서 MySQL의 위치는 매우 중요합니다. 다양한 응용 프로그램 시나리오에서 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 1) MySQL은 웹, 모바일 및 엔터프라이즈 레벨 시스템을 지원하는 효율적인 데이터 저장, 조직 및 검색 기능을 제공합니다. 2) 클라이언트 서버 아키텍처를 사용하고 여러 스토리지 엔진 및 인덱스 최적화를 지원합니다. 3) 기본 사용에는 테이블 작성 및 데이터 삽입이 포함되며 고급 사용에는 다중 테이블 조인 및 복잡한 쿼리가 포함됩니다. 4) SQL 구문 오류 및 성능 문제와 같은 자주 묻는 질문은 설명 명령 및 느린 쿼리 로그를 통해 디버깅 할 수 있습니다. 5) 성능 최적화 방법에는 인덱스의 합리적인 사용, 최적화 된 쿼리 및 캐시 사용이 포함됩니다. 모범 사례에는 거래 사용 및 준비된 체계가 포함됩니다

MySQL은 성능, 신뢰성, 사용 편의성 및 커뮤니티 지원을 위해 선택됩니다. 1.MYSQL은 효율적인 데이터 저장 및 검색 기능을 제공하여 여러 데이터 유형 및 고급 쿼리 작업을 지원합니다. 2. 고객-서버 아키텍처 및 다중 스토리지 엔진을 채택하여 트랜잭션 및 쿼리 최적화를 지원합니다. 3. 사용하기 쉽고 다양한 운영 체제 및 프로그래밍 언어를 지원합니다. 4. 강력한 지역 사회 지원을 받고 풍부한 자원과 솔루션을 제공합니다.

Apache는 데이터베이스에 연결하여 다음 단계가 필요합니다. 데이터베이스 드라이버 설치. 연결 풀을 만들려면 Web.xml 파일을 구성하십시오. JDBC 데이터 소스를 작성하고 연결 설정을 지정하십시오. JDBC API를 사용하여 Connections, 명세서 작성, 매개 변수 바인딩, 쿼리 또는 업데이트 실행 및 처리를 포함하여 Java 코드의 데이터베이스에 액세스하십시오.

Docker에서 MySQL을 시작하는 프로세스는 다음 단계로 구성됩니다. MySQL 이미지를 가져와 컨테이너를 작성하고 시작하고 루트 사용자 암호를 설정하고 포트 확인 연결을 매핑하고 데이터베이스를 작성하고 사용자는 데이터베이스에 모든 권한을 부여합니다.

웹 응용 프로그램에서 MySQL의 주요 역할은 데이터를 저장하고 관리하는 것입니다. 1. MySQL은 사용자 정보, 제품 카탈로그, 트랜잭션 레코드 및 기타 데이터를 효율적으로 처리합니다. 2. SQL 쿼리를 통해 개발자는 데이터베이스에서 정보를 추출하여 동적 컨텐츠를 생성 할 수 있습니다. 3.mysql은 클라이언트-서버 모델을 기반으로 작동하여 허용 가능한 쿼리 속도를 보장합니다.

Centos에 MySQL을 설치하려면 다음 단계가 필요합니다. 적절한 MySQL Yum 소스 추가. mysql 서버를 설치하려면 yum install mysql-server 명령을 실행하십시오. mysql_secure_installation 명령을 사용하여 루트 사용자 비밀번호 설정과 같은 보안 설정을 작성하십시오. 필요에 따라 MySQL 구성 파일을 사용자 정의하십시오. MySQL 매개 변수를 조정하고 성능을 위해 데이터베이스를 최적화하십시오.
