C++의 비트 연산 및 응용 기술
C++의 비트 연산은 프로그래머가 일반적으로 사용하는 계산 방법입니다. 비트 연산을 사용하여 데이터를 처리하면 일부 복잡한 컴퓨팅 작업을 보다 효율적으로 완료할 수 있습니다. 이 기사에서는 C++의 일반적인 비트 연산 기호와 해당 응용 기술을 소개하고 실제 개발에 사용할 수 있는 몇 가지 예를 소개합니다.
- 비트 연산 기호
C++는 이진 비트에서 연산할 수 있는 6개의 비트 연산 기호를 제공하며 그 중 4개는 비트 연산자이고 나머지 2개는 시프트 연산자입니다. 비트 연산 기호는 다음과 같습니다.
& 비트 AND 연산: 두 이진 비트가 모두 1이면 결과는 1이고, 그렇지 않으면 0입니다.
| 비트 OR 연산: 두 바이너리 비트가 모두 0이면 결과는 0이고, 그렇지 않으면 1입니다.
^ 비트별 XOR 연산: 두 개의 이진 비트가 같으면 결과는 0이고, 두 이진 비트가 다르면 결과는 1입니다.
~ 비트 부정 연산: 이진 비트를 부정합니다. 즉, 0은 1이 되고 1은 0이 됩니다.
쉬프트 연산 기호는 다음과 같습니다:
오른쪽 시프트 연산: 이진수를 지정된 자릿수만큼 오른쪽으로 이동하고 상위 비트를 0 또는 1로 채웁니다(원래 숫자가 양수인지 음수인지에 따라 다름).
- 응용 기술
비트 연산은 낮은 수준의 컴퓨터 연산에 널리 사용됩니다. 몇 가지 영리한 비트 연산 기술을 통해 많은 효율적인 알고리즘을 구현할 수 있습니다. 다음은 일반적으로 사용되는 몇 가지 기술입니다.
2.1 패리티 결정
이진수의 경우 마지막 숫자가 1이면 숫자는 홀수이고 그 반대도 마찬가지입니다. 따라서 비트 연산을 통해 숫자의 패리티를 결정할 수 있습니다.
모든 정수 n에 대해 n & 1의 결과가 0이면 n은 짝수이고, 그렇지 않으면 홀수라는 의미입니다. 예:
int n = 5;
if( n & 1 ){
cout << "奇数" << endl;
}
else {
cout << "偶数" << endl;
}
2.2 두 숫자의 값을 교환합니다.
두 변수의 값을 교환합니다. , 일반적으로 이 방법은 세 번째 변수를 사용하여 변수 중 하나의 값을 저장한 다음 다른 변수의 값을 여기에 할당하는 것입니다. 그러나 비트 연산을 사용하면 저장을 위한 추가 공간이 필요하지 않으며 비트 XOR 연산을 통해 직접 구현할 수 있습니다. 즉,
int a = 10, b = 20;
a = a ^ b; b ^ a;
a = a ^ b;
int count = 0;
while (n != 0){
if (n & 1 == 1){ count++; } n = n >> 1; //右移一位
return count;
}
return (n & (1 << i)) !=0 ;
return n | (1 << i);
return n & ~(1 << i);
- 응용예제
for (int j = 0; j < img.colnum(); j++){ if (img.at(i,j) < threshold){ img.at(i,j) = 0; //设为0 } else { img.at(i,j) = 255; //设为255 } }
위 내용은 C++의 비트 연산 및 응용 기술의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제









C++에서 전략 패턴을 구현하는 단계는 다음과 같습니다. 전략 인터페이스를 정의하고 실행해야 하는 메서드를 선언합니다. 특정 전략 클래스를 생성하고 각각 인터페이스를 구현하며 다양한 알고리즘을 제공합니다. 컨텍스트 클래스를 사용하여 구체적인 전략 클래스에 대한 참조를 보유하고 이를 통해 작업을 수행합니다.

Golang과 C++는 각각 가비지 수집 및 수동 메모리 관리 프로그래밍 언어로, 구문과 유형 시스템이 다릅니다. Golang은 Goroutine을 통해 동시 프로그래밍을 구현하고, C++는 스레드를 통해 이를 구현합니다. Golang 메모리 관리는 간단하고 C++는 더 강력한 성능을 제공합니다. 실제적인 경우 Golang 코드는 더 간결하며 C++는 확실한 성능 이점을 제공합니다.

중첩된 예외 처리는 중첩된 try-catch 블록을 통해 C++에서 구현되므로 예외 처리기 내에서 새 예외가 발생할 수 있습니다. 중첩된 try-catch 단계는 다음과 같습니다. 1. 외부 try-catch 블록은 내부 예외 처리기에서 발생한 예외를 포함하여 모든 예외를 처리합니다. 2. 내부 try-catch 블록은 특정 유형의 예외를 처리하며 범위를 벗어난 예외가 발생하면 외부 예외 처리기에 제어가 제공됩니다.

C++ 템플릿 상속을 사용하면 템플릿 파생 클래스가 기본 클래스 템플릿의 코드와 기능을 재사용할 수 있습니다. 이는 동일한 핵심 논리를 사용하지만 특정 동작이 다른 클래스를 만드는 데 적합합니다. 템플릿 상속 구문은 templateclassDerived:publicBase{}입니다. 예: templateclassBase{};templateclassDerived:publicBase{};. 실제 사례: 파생 클래스 Derived를 생성하고, 기본 클래스 Base의 계산 기능을 상속하고, 현재 개수를 인쇄하는 printCount 메서드를 추가했습니다.

STL 컨테이너를 반복하려면 컨테이너의 start() 및 end() 함수를 사용하여 반복자 범위를 얻을 수 있습니다. 벡터: for 루프를 사용하여 반복자 범위를 반복합니다. 연결 목록: 연결 목록의 요소를 탐색하려면 next() 멤버 함수를 사용합니다. 매핑: 키-값 반복자를 가져오고 for 루프를 사용하여 이를 탐색합니다.

C++ 템플릿은 컨테이너 클래스 템플릿, 알고리즘 템플릿, 일반 함수 템플릿, 메타프로그래밍 템플릿 등 실제 개발에서 널리 사용됩니다. 예를 들어 일반 정렬 알고리즘은 다양한 유형의 데이터 배열을 정렬할 수 있습니다.

Docker 환경을 사용할 때 Docker 환경에 Extensions를 설치하기 위해 PECL을 사용하여 오류의 원인 및 솔루션. 종종 일부 두통이 발생합니다 ...

C++ STL 컨테이너의 요소에 액세스하는 방법은 무엇입니까? 이를 수행하는 방법에는 여러 가지가 있습니다. 컨테이너 탐색: 반복자를 사용합니다. 범위 기반 for 루프를 사용하여 특정 요소에 액세스합니다. 인덱스 사용(아래 첨자 연산자 []) 키 사용(std::map 또는 std::unordered_map)
