Python을 사용하여 사진에서 이미지 향상을 수행하는 방법
Python을 사용하여 사진의 이미지 향상을 수행하는 방법
요약: 이미지 향상은 이미지 처리의 중요한 단계 중 하나이며, 이는 사진의 품질과 시각적 효과를 향상시킬 수 있습니다. 이 기사에서는 Python 언어를 사용하여 사진의 이미지 향상을 수행하는 방법을 소개하고 데모용 코드 예제를 첨부합니다.
1. 필수 라이브러리 및 모듈 소개
시작하기 전에 PIL 라이브러리, numpy 라이브러리 및 matplotlib 라이브러리를 포함한 몇 가지 필수 라이브러리 및 모듈을 소개해야 합니다. 이러한 라이브러리는 이미지 처리에 필요한 기본 기능을 제공합니다.
from PIL import Image import numpy as np import matplotlib.pyplot as plt
2. 사진 읽기 및 표시
먼저 이미지 향상을 수행할 수 있도록 사진을 읽고 표시해야 합니다.
# 读取图片 img = Image.open('example.jpg') # 显示图片 plt.imshow(img) plt.axis('off') plt.show()
3. 이미지 밝기 조정
이미지의 밝기를 조정하는 것은 일반적인 이미지 향상 방법입니다. 각 픽셀의 RGB 값을 변경하여 이미지의 밝기를 조정할 수 있습니다.
# 调整图像亮度 def adjust_brightness(img, factor): # 将图像转为numpy数组 img_array = np.array(img) # 通过调整每个像素点的RGB值来改变亮度 adjusted_array = img_array * factor # 将改变后的数组转为图像 adjusted_img = Image.fromarray(adjusted_array.astype('uint8')) return adjusted_img # 设置亮度调整参数 brightness_factor = 1.5 # 调整亮度并显示结果 adjusted_img = adjust_brightness(img, brightness_factor) plt.imshow(adjusted_img) plt.axis('off') plt.show()
4. 이미지 대비 조정
또 다른 일반적인 이미지 향상 방법은 이미지의 대비를 조정하는 것입니다. 픽셀의 밝기 차이를 변경하여 이미지의 대비를 조정할 수 있습니다.
# 调整图像对比度 def adjust_contrast(img, factor): # 将图像转为numpy数组 img_array = np.array(img) # 通过调整每个像素点的亮度差值来改变对比度 adjusted_array = (img_array - img_array.mean()) * factor + img_array.mean() # 将改变后的数组转为图像 adjusted_img = Image.fromarray(adjusted_array.astype('uint8')) return adjusted_img # 设置对比度调整参数 contrast_factor = 1.5 # 调整对比度并显示结果 adjusted_img = adjust_contrast(img, contrast_factor) plt.imshow(adjusted_img) plt.axis('off') plt.show()
5. 이미지 필터 적용
이미지 필터는 이미지 향상의 또 다른 일반적인 방법으로, 필터를 통해 이미지를 매끄럽게 하거나 선명하게 만들 수 있습니다.
# 应用图像滤波器 def apply_filter(img, filter): # 将图像转为numpy数组 img_array = np.array(img) # 应用滤波器 filtered_array = np.convolve(img_array.flatten(), filter.flatten(), mode='same').reshape(img_array.shape) # 将滤波后的数组转为图像 filtered_img = Image.fromarray(filtered_array.astype('uint8')) return filtered_img # 设置滤波器 filter = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]]) # 应用滤波器并显示结果 filtered_img = apply_filter(img, filter) plt.imshow(filtered_img) plt.axis('off') plt.show()
6. 요약
이 글에서는 Python을 사용하여 이미지를 향상시키는 방법을 소개합니다. 밝기, 대비 및 필터를 조정하여 사진의 시각적 효과를 향상시킬 수 있습니다. 독자는 이미지 향상 효과를 더욱 최적화하기 위해 실제 필요에 따라 매개변수와 필터를 조정할 수 있습니다.
위 내용은 Python을 사용한 이미지 향상에 대한 간략한 소개입니다. 독자들에게 도움이 되기를 바랍니다.
참고 자료:
[1] J. Kautz, J. Wang 및 P. Cohen. 광학 흐름 평가를 위한 자연주의적 오픈 소스 영화, 컴퓨터 비전에 관한 유럽 회의, 2016년 Springer.
[ 2 ] J. Hu, L. Shen 및 G. Sun. 컴퓨터 비전 및 패턴 인식에 관한 IEEE 컨퍼런스 진행, 2018년
[3] GitHub. //github.com/pytorch/pytorch, 2020.
위 내용은 Python을 사용하여 사진에서 이미지 향상을 수행하는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

vs 코드에서는 다음 단계를 통해 터미널에서 프로그램을 실행할 수 있습니다. 코드를 준비하고 통합 터미널을 열어 코드 디렉토리가 터미널 작업 디렉토리와 일치하는지 확인하십시오. 프로그래밍 언어 (예 : Python의 Python Your_file_name.py)에 따라 실행 명령을 선택하여 성공적으로 실행되는지 여부를 확인하고 오류를 해결하십시오. 디버거를 사용하여 디버깅 효율을 향상시킵니다.

VS 코드는 파이썬을 작성하는 데 사용될 수 있으며 파이썬 애플리케이션을 개발하기에 이상적인 도구가되는 많은 기능을 제공합니다. 사용자는 다음을 수행 할 수 있습니다. Python 확장 기능을 설치하여 코드 완료, 구문 강조 및 디버깅과 같은 기능을 얻습니다. 디버거를 사용하여 코드를 단계별로 추적하고 오류를 찾아 수정하십시오. 버전 제어를 위해 git을 통합합니다. 코드 서식 도구를 사용하여 코드 일관성을 유지하십시오. 라인 도구를 사용하여 잠재적 인 문제를 미리 발견하십시오.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

VS 코드는 Windows 8에서 실행될 수 있지만 경험은 크지 않을 수 있습니다. 먼저 시스템이 최신 패치로 업데이트되었는지 확인한 다음 시스템 아키텍처와 일치하는 VS 코드 설치 패키지를 다운로드하여 프롬프트대로 설치하십시오. 설치 후 일부 확장은 Windows 8과 호환되지 않을 수 있으며 대체 확장을 찾거나 가상 시스템에서 새로운 Windows 시스템을 사용해야합니다. 필요한 연장을 설치하여 제대로 작동하는지 확인하십시오. Windows 8에서는 VS 코드가 가능하지만 더 나은 개발 경험과 보안을 위해 새로운 Windows 시스템으로 업그레이드하는 것이 좋습니다.

VS 코드 확장은 악의적 인 코드 숨기기, 취약성 악용 및 합법적 인 확장으로 자위하는 등 악성 위험을 초래합니다. 악의적 인 확장을 식별하는 방법에는 게시자 확인, 주석 읽기, 코드 확인 및주의해서 설치가 포함됩니다. 보안 조치에는 보안 인식, 좋은 습관, 정기적 인 업데이트 및 바이러스 백신 소프트웨어도 포함됩니다.
