C 프로그램의 16진수를 8진수로 변환하는 프로그램
我们得到一个十六进制数字作为字符串;任务是将其转换为八进制。要将十六进制数转换为八进制数,我们必须 -
- 找到与十六进制数等效的二进制数。
- 将二进制数转换为八进制数。
什么是十六进制数
十六进制数是以16为基数的数字,数字从0到9,从10开始数字表示为A其中代表 10,B 代表 11,C 代表 12,D 代表 13,E 代表 14,F 代表 15。
要将十六进制数转换为二进制数,每个数字都会转换为 4 位的二进制数
什么是八进制
计算机中的八进制以8为基数表示,即0-7的八进制数由三个二进制数或三个二进制数字组成。
我们必须做什么
就像我们有一个十六进制数 1A6,所以它现在对于十六进制表示 1、10 和 6首先,我们必须找到十六进制数的二进制等价物,即,
因此,1A6 的二进制 = 0001 1010 0110
现在找到十六进制数的二进制后,下一个任务是找到八进制
在此之前,我们将二进制数分为三组。分组为 3 后,我们将得到 000 110 100 110
其八进制表示形式为 -
因此十六进制数 1A6 的八进制表示为 − 646
示例
Input: 1A6 Output: Octal Value = 646 Explanation: Input: 1AA Output: 652
我们将用来解决给定问题的方法 -
- 获取输入并将其存储为字符串。
- 转换十六进制数或表达式转换为二进制,按照以下方法 -
- 通过添加各自的二进制表示来检查所有 16 种十六进制情况。
- 返回结果。
- 按照以下步骤将二进制数转换为八进制数 -
- 通过比较二进制数与八进制数的所有可能情况,取 3 个位置.
- 设置八进制的值=(val * place)+八进制;
- 二进制数除以1000
- place *= 10 < /ul>
- 返回结果。
算法
Start Step 1-> In function long long int hexa_binary(char hex[]) Declare variables binary, place Declare and initialize i = 0, rem, val Initialize t n = strlen(hex) Initialize binary = 0ll and place = 0ll Loop For i = 0 and hex[i] != '\0' and i++ { binary = binary * place; switch (hex[i]) { case '0': binary += 0 case '1': binary += 1 case '2': binary += 10 case '3': binary += 11 case '4': binary += 100 case '5': binary += 101 case '6': binary += 110 case '7': binary += 111 case '8': binary += 1000 case '9': binary += 1001 case 'a': case 'A': binary += 1010 case 'b': case 'B': binary += 1011 case 'c': case 'C': binary += 1100 case 'd': case 'D': binary += 1101; break; case 'e': case 'E': binary += 1110; break; case 'f': case 'F': binary += 1111; break; default: printf("Invalid hexadecimal input."); } place = 10000; } return binary; } long long int binary_oct(long long binary) { long long int octal, place; int i = 0, rem, val; octal = 0ll; place = 0ll; place = 1; while (binary > 0) { rem = binary % 1000; switch (rem) { case 0: val = 0; break; case 1: val = 1; break; case 10: val = 2; break; case 11: val = 3; break; case 100: val = 4; break; case 101: val = 5; break; case 110: val = 6; break; case 111: val = 7; break; } octal = (val * place) + octal; binary /= 1000; place *= 10; } return octal; } long long int hexa_oct(char hex[]) { long long int octal, binary; // convert HexaDecimal to Binary binary = hexa_binary(hex); // convert Binary to Octal octal = binary_oct(binary); return octal; } int main() { char hex[20] = "1a99"; printf("Octal Value = %lld", hexa_oct(hex)); return 0; }
示例
#include <stdio.h> #include <string.h> #include <math.h> //To convert hex to binary first long long int hexa_binary(char hex[]) { long long int binary, place; int i = 0, rem, val; int n = strlen(hex); binary = 0ll; place = 0ll; for (i = 0; hex[i] != '\0'; i++) { binary = binary * place; switch (hex[i]) { case '0': binary += 0; break; case '1': binary += 1; break; case '2': binary += 10; break; case '3': binary += 11; break; case '4': binary += 100; break; case '5': binary += 101; break; case '6': binary += 110; break; case '7': binary += 111; break; case '8': binary += 1000; break; case '9': binary += 1001; break; case 'a': case 'A': binary += 1010; break; case 'b': case 'B': binary += 1011; break; case 'c': case 'C': binary += 1100; break; case 'd': case 'D': binary += 1101; break; case 'e': case 'E': binary += 1110; break; case 'f': case 'F': binary += 1111; break; default: printf("Invalid hexadecimal input."); } place = 10000; } return binary; } //To convert binary to octal long long int binary_oct(long long binary) { long long int octal, place; int i = 0, rem, val; octal = 0ll; place = 0ll; place = 1; // giving all binary numbers for octal conversion while (binary > 0) { rem = binary % 1000; switch (rem) { case 0: val = 0; break; case 1: val = 1; break; case 10: val = 2; break; case 11: val = 3; break; case 100: val = 4; break; case 101: val = 5; break; case 110: val = 6; break; case 111: val = 7; break; } octal = (val * place) + octal; binary /= 1000; place *= 10; } return octal; } // to convert the hexadecimal number to octal long long int hexa_oct(char hex[]) { long long int octal, binary; // convert HexaDecimal to Binary binary = hexa_binary(hex); // convert Binary to Octal octal = binary_oct(binary); return octal; } //main function int main() { char hex[20] = "5CD"; printf("Octal Value = %lld", hexa_oct(hex)); return 0; }
输出
Octal Value = 2715
위 내용은 C 프로그램의 16진수를 8진수로 변환하는 프로그램의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제









아래에는 로마 숫자를 십진수로 변환하는 C 언어 알고리즘이 나와 있습니다. 알고리즘 1단계 - 시작 2단계 - 런타임에 로마 숫자 읽기 3단계 - 길이: = strlen(roman) 4단계 - i=0에서 길이-1까지 단계 4.1-switch(roman[i]) 4.1.1단계-case'm': &nbs

사전식 문자열 비교는 문자열이 사전 순서로 비교된다는 것을 의미합니다. 예를 들어 'apple'과 'appeal'이라는 두 개의 문자열이 있는 경우 'app'의 처음 세 문자가 동일하므로 첫 번째 문자열이 마지막에 옵니다. 그러면 첫 번째 문자열의 문자는 'l'이고 두 번째 문자열의 네 번째 문자는 'e'입니다. 'e'는 'l'보다 짧기 때문에 사전순으로 정렬하면 e가 먼저 나옵니다. 문자열은 정렬되기 전에 사전순으로 비교됩니다. 이 기사에서는 C++를 사용하여 두 문자열을 사전순으로 비교하는 다양한 기술을 살펴보겠습니다. C++ 문자열에서 Compare() 함수 사용하기 C++string 개체에는 Compare() 함수가 있습니다.

연결된 목록은 동적 메모리 할당을 사용합니다. 즉, 그에 따라 메모리가 늘어나고 줄어듭니다. 이는 노드 모음으로 정의됩니다. 여기서 노드는 데이터와 링크라는 두 부분으로 구성됩니다. 데이터, 링크, 연결리스트는 다음과 같이 표현됩니다. - 연결리스트의 종류 연결리스트에는 다음과 같은 4가지 종류가 있습니다. - 단일 연결리스트 / 단일 연결리스트 이중 / 이중 연결리스트 원형 단일 연결리스트 순환 이중 연결리스트 연결된 목록의 길이를 찾는 재귀 메서드 논리는 -intlength(node *temp){ if(temp==NULL) returnl{&n;

쌍곡선 함수는 원 대신 쌍곡선을 사용하여 정의되며 일반 삼각 함수와 동일합니다. 제공된 각도(라디안)에서 쌍곡사인 함수의 비율 매개변수를 반환합니다. 그러나 반대로 하십시오. 즉, 반대로 하십시오. 쌍곡선 사인으로부터 각도를 계산하려면 쌍곡선 역사인 연산과 같은 역쌍곡선 삼각법 연산이 필요합니다. 이 과정에서는 라디안 단위의 쌍곡선 사인 값을 사용하여 각도를 계산하기 위해 C++에서 쌍곡선 역사인(asinh) 함수를 사용하는 방법을 보여줍니다. 쌍곡선 아크사인 연산은 다음 공식 -$$\mathrm{sinh^{-1}x\:=\:In(x\:+\:\sqrt{x^2\:+\:1})}을 따릅니다. 여기서\:In\:은\:자연 로그\:(log_e\:k)

맵은 각 요소가 두 값, 즉 키 값과 맵 값의 쌍인 C++의 특수한 유형의 컨테이너입니다. 키 값은 각 항목을 인덱싱하는 데 사용되며 매핑된 값은 키와 연결된 값입니다. 매핑된 값이 고유한지 여부에 관계없이 키는 항상 고유합니다. C++에서 맵 요소를 인쇄하려면 반복자를 사용해야 합니다. 항목 집합의 요소는 반복자 개체로 표시됩니다. 반복자는 주로 배열 및 기타 유형의 컨테이너(예: 벡터)와 함께 사용되며 특정 범위 내의 특정 요소를 식별하는 데 사용할 수 있는 특정 작업 집합을 가지고 있습니다. 반복자는 범위나 컨테이너에 있는 다양한 요소를 참조하기 위해 증가하거나 감소할 수 있습니다. 반복자는 범위에 있는 특정 요소의 메모리 위치를 가리킵니다. 반복자를 사용하여 C++에서 지도 인쇄하기 먼저, 정의하는 방법을 살펴보겠습니다.

이름 바꾸기 기능은 파일이나 디렉토리를 이전 이름에서 새 이름으로 변경합니다. 이 작업은 이동 작업과 유사합니다. 따라서 이 이름 바꾸기 기능을 사용하여 파일을 이동할 수도 있습니다. 이 함수는 stdio.h 라이브러리 헤더 파일에 있습니다. rename 함수의 구문은 다음과 같습니다. intrename(constchar*oldname,constchar*newname); rename() 함수의 함수는 두 개의 매개변수를 허용합니다. 하나는 oldname이고 다른 하나는 newname입니다. 두 매개변수는 모두 파일의 이전 이름과 새 이름을 정의하는 상수 문자에 대한 포인터입니다. 파일 이름이 성공적으로 변경되면 0을 반환하고, 그렇지 않으면 0이 아닌 정수를 반환합니다. 이름 바꾸기 작업 중

문제는 유클리드 알고리즘을 구현하여 두 정수의 최대 공약수(GCD)와 최소 공배수(LCM)를 구하고 주어진 정수로 결과를 출력합니다. 솔루션 두 정수의 최대 공약수(GCD)와 최소 공배수(LCM)를 찾기 위해 유클리드 알고리즘을 구현하는 솔루션은 다음과 같습니다. GCD와 LCM을 찾는 논리는 다음과 같습니다. - if (firstno*secondno!=0) { gcd= gcd_rec(firstno,secondno); printf("TheGCDof%dand%dis%d",

현대 과학은 복수의 개념에 크게 의존하고 있는데, 이는 17세기 초 Girolamo Cardano가 처음으로 확립한 것으로, 그는 16세기에 이를 도입했습니다. 복소수의 공식은 a+ib입니다. 여기서 a는 html 코드이고 b는 실수입니다. 복소수는 실수부 <a>와 허수부(<ib>)의 두 부분으로 구성됩니다. i 또는 iota의 값은 √-1입니다. C++의 복수형 클래스는 복소수를 나타내는 데 사용되는 클래스입니다. C++의 복소수 클래스는 여러 복소수 연산을 표현하고 제어할 수 있습니다. 복수의 숫자 표시를 어떻게 표현하고 제어하는지 살펴보겠습니다. imag() 멤버 함수 위에서 언급했듯이 복소수는 실수부와 허수부로 구성됩니다. 실제 부분을 표시하려면 real()을 사용합니다.
