목차
Solution
Example
Output
출력
백엔드 개발 C++ 주어진 이진 트리에서 가장 큰 이진 검색 하위 트리 찾기 - C++의 에피소드 1

주어진 이진 트리에서 가장 큰 이진 검색 하위 트리 찾기 - C++의 에피소드 1

Aug 31, 2023 pm 03:33 PM

이 문제에는 이진 트리 BT가 주어졌습니다. 우리의 임무는 주어진 이진 트리에서 가장 큰 이진 검색 하위 트리를 찾는 것입니다.

바이너리 트리는 데이터 저장에 사용되는 특수한 데이터 구조입니다. 이진 트리에는 각 노드가 최대 2개의 하위 노드를 가질 수 있다는 특별한 조건이 있습니다.

BST(이진 검색 트리)는 다음 속성을 만족하는 트리입니다.

  • 왼쪽 하위 트리의 키 값은 상위 노드(루트 노드)의 키 값보다 작습니다.

  • 오른쪽 하위 트리의 키 값은 상위 노드(루트 노드)의 키 값보다 크거나 같습니다.

이 문제를 이해하기 위해 예를 들어 보겠습니다.

Input:

在给定的二叉树中找到最大的二叉搜索子树 - C++中的第1集

Output: 3

Explanation

Full binary tree is a BST.
로그인 후 복사

Solution

~을 해라 트리 진행 중 순서 순회. 트리의 각 노드에 대해 하위 트리가 이진 검색 트리인지 확인합니다. 마지막으로 가장 큰 이진 검색 하위 트리의 크기가 반환됩니다.

Example

우리 솔루션의 작동 방식을 보여주는 프로그램의 예

#include<bits/stdc++.h>
using namespace std;
class node{
   public:
   int data;
   node* left;
   node* right;
   node(int data){
      this->data = data;
      this->left = NULL;
      this->right = NULL;
   }
};
int findTreeSize(node* node) {
   if (node == NULL)
      return 0;
   else
      return(findTreeSize(node->left) + findTreeSize(node->right) + 1);
}
int isBSTree(struct node* node) {
   if (node == NULL)
      return 1;
   if (node->left != NULL && node->left->data > node->data)
      return 0;
   if (node->right != NULL && node->right->data < node->data)
      return 0;
   if (!isBSTree(node->left) || !isBSTree(node->right))
      return 0;
   return 1;
}
int findlargestBSTSize(struct node *root) {
   if (isBSTree(root)){
      return findTreeSize(root);
}
else
   return max(findlargestBSTSize(root->left), findlargestBSTSize(root->right));
}
int main() {
   node *root = new node(5);
   root->left = new node(2);
   root->right = new node(8);
   root->left->left = new node(1);
   root->left->right = new node(4);
   cout<<"The size of the largest possible BST is "<<findlargestBSTSize(root);
   return 0;
}
로그인 후 복사

Output

The size of the largest possible BST is 5
로그인 후 복사

또 다른 접근 방식

이 문제를 해결하는 또 다른 방법은 아래쪽에서 트리를 순회하고 하위 노드를 통해 확인하는 것입니다. BST. 이를 위해 다음을 추적합니다.

가 BST인지 여부.

  • 왼쪽 하위 트리의 경우 가장 큰 요소의 값입니다.

  • 오른쪽 하위 트리의 경우 가장 작은 요소의 값입니다. BST를 확인하려면 이 값을 현재 노드와 비교해야 합니다.

또한 최대 BST 크기는 현재 BST 크기와 비교하여 업데이트됩니다.

#include<bits/stdc++.h>
using namespace std;
class node{
   public:
   int data;
   node* left;
   node* right;
   node(int data){
      this->data = data;
      this->left = NULL;
      this->right = NULL;
   }
};
int findlargestBSTSizeRec(node* node, int *minValRsubTree, int *maxValLsubTree, int *maxBSTSize, bool *isBSTree) {
   if (node == NULL){
      *isBSTree = true;
      return 0;
   }
   int min = INT_MAX;
   bool left_flag = false;
   bool right_flag = false;
   int leftSubtreeSize,rightSubTreeSize;
   *maxValLsubTree = INT_MIN;
   leftSubtreeSize = findlargestBSTSizeRec(node->left, minValRsubTree, maxValLsubTree, maxBSTSize, isBSTree);
   if (*isBSTree == true && node->data > *maxValLsubTree)
      left_flag = true;
   min = *minValRsubTree;
   *minValRsubTree = INT_MAX;
   rightSubTreeSize = findlargestBSTSizeRec(node->right, minValRsubTree, maxValLsubTree, maxBSTSize, isBSTree);
   if (*isBSTree == true && node->data < *minValRsubTree)
      right_flag = true;
   if (min < *minValRsubTree)
      *minValRsubTree = min;
   if (node->data < *minValRsubTree)
      *minValRsubTree = node->data;
   if (node->data > *maxValLsubTree)
      *maxValLsubTree = node->data;
   if(left_flag && right_flag){
      if (leftSubtreeSize + rightSubTreeSize + 1 > *maxBSTSize)
         *maxBSTSize = (leftSubtreeSize + rightSubTreeSize + 1);
      return (leftSubtreeSize + rightSubTreeSize + 1);
   }
   else{
      *isBSTree = false;
      return 0;
   }
}
int findlargestBSTSize(node* node){
   int min = INT_MAX;
   int max = INT_MIN;
   int largestBSTSize = 0;
   bool isBST = false;
   findlargestBSTSizeRec(node, &min, &max, &largestBSTSize, &isBST);
   return largestBSTSize;
}
int main(){
   node *root = new node(5);
   root->left = new node(2);
   root->right = new node(8);
   root->left->left = new node(1);
   root->left->right = new node(4);
   cout<<"The Size of the largest BST is "<<findlargestBSTSize(root);
   return 0;
}
로그인 후 복사

출력

The Size of the largest BST is 5
로그인 후 복사

위 내용은 주어진 이진 트리에서 가장 큰 이진 검색 하위 트리 찾기 - C++의 에피소드 1의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

C 언어 데이터 구조 : 나무 및 그래프의 데이터 표현 및 작동 C 언어 데이터 구조 : 나무 및 그래프의 데이터 표현 및 작동 Apr 04, 2025 am 11:18 AM

C 언어 데이터 구조 : 트리 및 그래프의 데이터 표현은 노드로 구성된 계층 적 데이터 구조입니다. 각 노드에는 데이터 요소와 하위 노드에 대한 포인터가 포함되어 있습니다. 이진 트리는 특별한 유형의 트리입니다. 각 노드에는 최대 두 개의 자식 노드가 있습니다. 데이터는 structtreenode {intdata; structtreenode*왼쪽; structReenode*오른쪽;}을 나타냅니다. 작업은 트리 트래버스 트리 (사전 조정, 인 순서 및 나중에 순서) 검색 트리 삽입 노드 삭제 노드 그래프는 요소가 정점 인 데이터 구조 모음이며 이웃을 나타내는 오른쪽 또는 무의미한 데이터로 모서리를 통해 연결할 수 있습니다.

C 언어 파일 작동 문제의 진실 C 언어 파일 작동 문제의 진실 Apr 04, 2025 am 11:24 AM

파일 작동 문제에 대한 진실 : 파일 개방이 실패 : 불충분 한 권한, 잘못된 경로 및 파일이 점유 된 파일. 데이터 쓰기 실패 : 버퍼가 가득 차고 파일을 쓸 수 없으며 디스크 공간이 불충분합니다. 기타 FAQ : 파일이 느리게 이동, 잘못된 텍스트 파일 인코딩 및 이진 파일 읽기 오류.

C에서 RValue 참조를 효과적으로 사용하려면 어떻게합니까? C에서 RValue 참조를 효과적으로 사용하려면 어떻게합니까? Mar 18, 2025 pm 03:29 PM

기사는 Move Semantics, Perfect Forwarding 및 Resource Management에 대한 C에서 RValue 참조의 효과적인 사용에 대해 논의하여 모범 사례 및 성능 향상을 강조합니다 (159 자).

보다 표현적인 데이터 조작을 위해 C 20의 범위를 어떻게 사용합니까? 보다 표현적인 데이터 조작을 위해 C 20의 범위를 어떻게 사용합니까? Mar 17, 2025 pm 12:58 PM

C 20 범위는 표현성, 합성 가능성 및 효율성으로 데이터 조작을 향상시킵니다. 더 나은 성능과 유지 관리를 위해 복잡한 변환을 단순화하고 기존 코드베이스에 통합합니다.

C-Subscript를 계산하는 방법 3 첨자 5 C-Subscript 3 첨자 5 알고리즘 튜토리얼 C-Subscript를 계산하는 방법 3 첨자 5 C-Subscript 3 첨자 5 알고리즘 튜토리얼 Apr 03, 2025 pm 10:33 PM

C35의 계산은 본질적으로 조합 수학이며, 5 개의 요소 중 3 개 중에서 선택된 조합 수를 나타냅니다. 계산 공식은 C53 = 5입니다! / (3! * 2!)는 효율을 향상시키고 오버플로를 피하기 위해 루프에 의해 직접 계산할 수 있습니다. 또한 확률 통계, 암호화, 알고리즘 설계 등의 필드에서 많은 문제를 해결하는 데 조합의 특성을 이해하고 효율적인 계산 방법을 마스터하는 데 중요합니다.

C 언어 기능의 기본 요구 사항은 무엇입니까? C 언어 기능의 기본 요구 사항은 무엇입니까? Apr 03, 2025 pm 10:06 PM

C 언어 기능은 코드 모듈화 및 프로그램 구축의 기초입니다. 그들은 선언 (함수 헤더)과 정의 (기능 본문)로 구성됩니다. C 언어는 값을 사용하여 기본적으로 매개 변수를 전달하지만 주소 패스를 사용하여 외부 변수를 수정할 수도 있습니다. 함수는 반환 값을 가질 수 있거나 가질 수 있으며 반환 값 유형은 선언과 일치해야합니다. 기능 명명은 낙타 또는 밑줄을 사용하여 명확하고 이해하기 쉬워야합니다. 단일 책임 원칙을 따르고 기능 단순성을 유지하여 유지 관리 및 가독성을 향상시킵니다.

동적 파견은 C에서 어떻게 작동하며 성능에 어떤 영향을 미칩니 까? 동적 파견은 C에서 어떻게 작동하며 성능에 어떤 영향을 미칩니 까? Mar 17, 2025 pm 01:08 PM

이 기사는 C의 동적 파견, 성능 비용 및 최적화 전략에 대해 설명합니다. 동적 파견이 성능에 영향을 미치는 시나리오를 강조하고이를 정적 파견과 비교하여 성능과 성능 간의 트레이드 오프를 강조합니다.

성능을 향상시키기 위해 C의 Move Semantics를 어떻게 사용합니까? 성능을 향상시키기 위해 C의 Move Semantics를 어떻게 사용합니까? Mar 18, 2025 pm 03:27 PM

이 기사는 C에서 Move Semantics를 사용하여 불필요한 복사를 피함으로써 성능을 향상시키는 것에 대해 논의합니다. STD :: MOVE를 사용하여 이동 생성자 및 할당 연산자 구현을 다루고 효과적인 APPL을위한 주요 시나리오 및 함정을 식별합니다.

See all articles