범용 데이터 향상 기술, 임의 양자화는 모든 데이터 형식에 적합합니다.
자기 지도 학습 알고리즘은 자연어 처리, 컴퓨터 비전과 같은 분야에서 상당한 발전을 이루었습니다. 이러한 자기 지도 학습 알고리즘은 개념적으로는 일반적이지만 특정 작업은 특정 데이터 양식을 기반으로 합니다. 이는 다양한 데이터 양식에 맞게 다양한 자기 지도 학습 알고리즘을 개발해야 함을 의미합니다. 이를 위해 본 논문에서는 모든 데이터 양식에 적용할 수 있는 일반적인 데이터 증대 기법을 제안한다. 기존 범용 자기 지도 학습과 비교하여 이 방법은 상당한 성능 향상을 달성할 수 있으며, 특정 양식을 위해 설계된 일련의 복잡한 데이터 향상 방법을 대체하고 유사한 성능을 달성할 수 있습니다. ㅋㅋㅋ 소개
- 일반적으로 입력 데이터는 시퀀스 차원과 채널 차원 벡터로 구성된 바이너리로 표현될 수 있습니다. 시퀀스 차원은 종종 이미지의 공간적 차원, 음성의 시간적 차원, 언어의 구문적 차원과 같은 데이터의 양식과 관련됩니다. 채널 차원은 양식과 무관합니다. 자기 지도 학습에서는 폐색 모델링이나 폐색을 데이터 증강으로 사용하는 것이 효과적인 학습 방법이 되었습니다. 그러나 이러한 작업은 시퀀스 차원에서 수행됩니다. 다양한 데이터 양식에 널리 적용하기 위해 본 논문에서는 채널 차원에 작용하는 데이터 향상 방법인 랜덤 양자화를 제안합니다. Non-Uniform Quantizer를 사용하여 각 채널의 데이터를 동적으로 양자화함으로써 양자화된 값은 무작위로 나누어진 간격에서 무작위로 샘플링됩니다. 이렇게 하면 동일한 간격에서 원래 입력된 정보의 차이가 삭제되고 서로 다른 간격에서 데이터의 상대적인 크기를 유지하여 마스킹 효과를 얻을 수 있습니다
- 이 방법은 다양한 데이터에 사용할 수 있습니다. 자연 이미지, 3D 포인트 클라우드, 음성, 텍스트, 센서 데이터, 의료 이미지 등 모든 형태에서 기존의 자기 지도 학습 방법을 능가합니다. 대조 학습(예: MoCo-v3), 자기 증류식 자기 지도 학습(예: BYOL) 등 다양한 사전 학습 학습 작업에서는 기존 방법보다 나은 기능을 학습합니다. 이 방법은 CNN 및 Transformer와 같은 다양한 백본 네트워크 구조에서도 검증되었습니다.
Method
양자화란 일련의 이산 값을 사용하여 연속적인 데이터를 표현함으로써 데이터의 효율적인 저장, 운영 및 전송을 용이하게 하는 것을 말합니다. 그러나 양자화 작업의 일반적인 목표는 정확도를 잃지 않고 데이터를 압축하는 것입니다. 따라서 프로세스는 결정론적이며 원본 데이터에 최대한 가깝게 설계되었습니다. 이는 향상 수단으로서의 강점과 출력의 데이터 풍부성을 제한합니다.
이 기사에서는 각 입력 채널 데이터를 겹치지 않는 여러 개의 무작위 간격(
)으로 독립적으로 나누고, 각 간격 내에 속하는 원래 입력을 무작위로 샘플링된 상수
자기 지도 학습 작업에서 채널 차원 데이터를 마스킹하는 무작위 양자화 기능은 다음 세 가지 측면의 설계에 따라 다릅니다. 1) 숫자 간격을 무작위로 나누기 2) 출력 값을 무작위로 샘플링하고 3 ) 분할된 숫자 간격 번호입니다.
구체적으로, 랜덤 프로세스는 더 풍부한 샘플을 가져오고, 동일한 데이터라도 랜덤 양자화 작업이 수행될 때마다 다른 데이터 샘플을 생성할 수 있습니다. 동시에 무작위 프로세스는 원본 데이터를 더 크게 향상시킵니다. 예를 들어 큰 데이터 간격을 무작위로 나누거나 매핑 지점이 간격의 중앙 지점에서 벗어나면 원본 입력 및 출력이 다음과 같이 발생할 수 있습니다. 간격 사이에 더 큰 차이가 있습니다.
분할 간격을 적절하게 줄여 강화 강도를 쉽게 높일 수 있습니다. 이와 같이 Siamese 표현 학습에 적용하면 두 네트워크 분기는 충분한 정보 차이가 있는 입력 데이터를 수신할 수 있어 특징 학습을 촉진하는 강력한 학습 신호를 구성할 수 있습니다
아래 그림은 서로 다른 데이터 모델을 시각화한 것입니다. 이 데이터 증대 방법 사용:
실험 결과
다시 작성된 내용은 다음과 같습니다. 모드 1: Image
이 기사는 ImageNet-1K 데이터 세트에서 평가됩니다. MoCo-v3 및 BYOL, 평가 지표는 선형 평가입니다. 유일한 데이터 증대 방법으로 단독으로 사용할 경우, 즉 본 논문의 증대는 원본 이미지의 중앙 크롭에 적용되며, 일반적인 RRC(Random Resize Crop)와 함께 사용하면 이 방법이 더 나은 결과를 얻었습니다. 기존의 일반적인 자기주도 학습 방식보다 더 나은 결과를 얻을 수 있습니다.
CJ(컬러 지터링)와 같은 이미지 데이터용으로 개발된 기존 데이터 향상 방법과 비교할 때 이 문서의 방법은 분명한 성능 이점을 가지고 있습니다. 동시에 이 방법은 색상 지터링, 무작위 그레이 스케일, 무작위 가우시안 블러, 무작위 노출(태양광화)을 포함하여 MoCo-v3/BYOL의 일련의 복잡한 데이터 향상 방법(전체)을 대체하고 다음과 유사한 효과를 얻을 수도 있습니다. 복잡한 데이터 향상 방법.
다시 작성해야 하는 내용은 다음과 같습니다. 모드 2: 3D 포인트 클라우드
ModelNet40 데이터 세트의 분류 작업과 ShapeNet Part 데이터 세트의 분할 작업에서 본 연구에서는 무작위로 검증했습니다. 양자화 기존 자체 감독 방법보다 우수합니다. 특히 다운스트림 훈련 세트의 데이터 양이 작은 경우 이 연구 방법은 기존 포인트 클라우드 자체 지도 알고리즘을 크게 초과합니다
재작성된 내용: 세 번째 양식: 음성
이 기사의 방법은 음성 데이터 세트에 대한 기존 자기 지도 학습 방법보다 더 나은 성능을 달성합니다. 본 논문에서는 6개의 다운스트림 데이터 세트에서 이 방법의 우수성을 검증했습니다. 그 중 가장 어려운 데이터 세트인 VoxCeleb1(가장 많은 카테고리를 포함하고 다른 데이터 세트의 수를 훨씬 초과함)에서 이 방법은 상당한 성능 향상을 달성했습니다. (5.6점).
다시 작성된 콘텐츠는 다음과 같습니다. 모드 4: DABS
DABS는 자연 이미지, 텍스트, 음성, 센서를 포함한 다양한 모달 데이터를 다루는 일반적인 자기 지도 학습 벤치마크입니다. 데이터, 의료영상, 그래픽 등 우리의 방법은 DABS
관심 있는 독자는 원본 논문을 읽고 연구 내용을 이해할 수 있습니다. 세부 정보
위 내용은 범용 데이터 향상 기술, 임의 양자화는 모든 데이터 형식에 적합합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C에서 높은 DPI 디스플레이를 처리 할 수 있습니다. 1) DPI 및 스케일링을 이해하고 운영 체제 API를 사용하여 DPI 정보를 얻고 그래픽 출력을 조정하십시오. 2) 크로스 플랫폼 호환성을 처리하고 SDL 또는 QT와 같은 크로스 플랫폼 그래픽 라이브러리를 사용하십시오. 3) 성능 최적화를 수행하고 캐시, 하드웨어 가속 및 세부 사항 수준의 동적 조정을 통해 성능 향상; 4) 흐릿한 텍스트 및 인터페이스 요소와 같은 일반적인 문제를 해결하고 DPI 스케일링을 올바르게 적용하여 해결합니다.

C의 DMA는 직접 메모리 액세스 기술인 DirectMemoryAccess를 말하며 하드웨어 장치는 CPU 개입없이 데이터를 메모리로 직접 전송할 수 있습니다. 1) DMA 운영은 하드웨어 장치 및 드라이버에 크게 의존하며 구현 방법은 시스템마다 다릅니다. 2) 메모리에 직접 액세스하면 보안 위험이 발생할 수 있으며 코드의 정확성과 보안이 보장되어야합니다. 3) DMA는 성능을 향상시킬 수 있지만 부적절하게 사용하면 시스템 성능이 저하 될 수 있습니다. 실습과 학습을 통해 우리는 DMA 사용 기술을 습득하고 고속 데이터 전송 및 실시간 신호 처리와 같은 시나리오에서 효과를 극대화 할 수 있습니다.

C는 실시간 운영 체제 (RTO) 프로그래밍에서 잘 수행하여 효율적인 실행 효율성과 정확한 시간 관리를 제공합니다. 1) c 하드웨어 리소스의 직접 작동 및 효율적인 메모리 관리를 통해 RTO의 요구를 충족시킵니다. 2) 객체 지향 기능을 사용하여 C는 유연한 작업 스케줄링 시스템을 설계 할 수 있습니다. 3) C는 효율적인 인터럽트 처리를 지원하지만 실시간을 보장하려면 동적 메모리 할당 및 예외 처리를 피해야합니다. 4) 템플릿 프로그래밍 및 인라인 함수는 성능 최적화에 도움이됩니다. 5) 실제 응용 분야에서 C는 효율적인 로깅 시스템을 구현하는 데 사용될 수 있습니다.

MySQL에서는 altertabletable_nameaddcolumnnew_columnvarchar (255) 이후에 필드를 추가하여 altertabletable_namedropcolumncolumn_to_drop을 사용하여 필드를 삭제합니다. 필드를 추가 할 때는 쿼리 성능 및 데이터 구조를 최적화하기위한 위치를 지정해야합니다. 필드를 삭제하기 전에 작업이 돌이킬 수 없는지 확인해야합니다. 온라인 DDL, 백업 데이터, 테스트 환경 및 저하 기간을 사용하여 테이블 구조 수정은 성능 최적화 및 모범 사례입니다.

C에서 스레드 성능을 측정하면 표준 라이브러리에서 타이밍 도구, 성능 분석 도구 및 사용자 정의 타이머를 사용할 수 있습니다. 1. 라이브러리를 사용하여 실행 시간을 측정하십시오. 2. 성능 분석을 위해 GPROF를 사용하십시오. 단계에는 컴파일 중에 -pg 옵션 추가, GMON.out 파일을 생성하기 위해 프로그램을 실행하며 성능 보고서를 생성하는 것이 포함됩니다. 3. Valgrind의 Callgrind 모듈을 사용하여보다 자세한 분석을 수행하십시오. 단계에는 Callgrind.out 파일을 생성하고 Kcachegrind를 사용하여 결과를보기위한 프로그램 실행이 포함됩니다. 4. 사용자 정의 타이머는 특정 코드 세그먼트의 실행 시간을 유연하게 측정 할 수 있습니다. 이 방법은 스레드 성능을 완전히 이해하고 코드를 최적화하는 데 도움이됩니다.

교환의 내장 양자화 도구에는 다음이 포함됩니다. 1. Binance : Binance 선물 정량 모듈, 낮은 취급 수수료 및 AI 지원 거래를 지원합니다. 2. OKX (OUYI) : 다중 계정 관리 및 지능형 주문 라우팅을 지원하고 기관 수준의 위험 관리를 제공합니다. 독립적 인 정량적 전략 플랫폼에는 다음이 포함됩니다. 4. Quadency : 맞춤형 위험 임계 값을 지원하는 전문 수준 알고리즘 전략 라이브러리. 5. Pionex : 내장 16 사전 설정 전략, 낮은 거래 수수료. 수직 도메인 도구에는 다음이 포함됩니다. 6. Cryptohopper : 클라우드 기반 정량 플랫폼, 150 개의 기술 지표를 지원합니다. 7. BITSGAP :

마우스 스크롤링 이벤트 침투의 효과를 달성하는 방법은 무엇입니까? 웹을 탐색하면 종종 특별한 상호 작용 디자인이 발생합니다. 예를 들어, DeepSeek 공식 웹 사이트에서 � ...
