목차
지연 예측 개요
설치 및 설정
지연 예측 사용
1단계: 필수 라이브러리 가져오기 및 데이터 세트 로드
2단계: 데이터를 훈련 세트와 테스트 세트로 분할
3단계: LazyClassifier 인스턴스 생성 및 데이터 피팅
4단계: 모델 요약 보고서 받기
제한 사항 및 참고 사항
결론
백엔드 개발 파이썬 튜토리얼 게으른 예측 라이브러리는 기계 학습을 위한 Python 라이브러리입니다.

게으른 예측 라이브러리는 기계 학습을 위한 Python 라이브러리입니다.

Sep 11, 2023 pm 10:01 PM
기계 학습 파이썬 라이브러리 게으른 예측

게으른 예측 라이브러리는 기계 학습을 위한 Python 라이브러리입니다.

머신 러닝은 데이터 분석의 혁신적인 시대를 열어 복잡한 패턴을 발견하고 정확한 예측을 하며 복잡한 데이터 세트에서 의미 있는 통찰력을 추출하는 방식을 혁신하는 데 도움이 되었습니다. 하지만 머신러닝 모델을 구현하는 과정은 복잡한 코딩, 꼼꼼한 매개변수 튜닝, 철저한 평가로 인해 부담스럽게 느껴질 때가 많습니다. 다행스럽게도 Python은 전체 프로세스를 단순화하는 것을 목표로 하는 “Lazy Predict”라는 귀중한 라이브러리를 제공합니다. 이 기사에서는 Lazy Predict 라이브러리를 탐색하고 다양한 기능을 살펴보고 기계 학습 워크플로를 가속화하는 놀라운 방법을 공개합니다. Lazy Predict의 강력한 기능을 활용함으로써 데이터 과학자와 기계 학습 실무자는 귀중한 시간과 에너지를 절약하여 모델 결과를 분석하고 해석하는 중요한 작업에 집중할 수 있습니다. 이제 Lazy Predict가 Python 기반 기계 학습의 세계에 제공하는 매력적인 기능과 중요한 이점을 알아보기 위한 계몽적인 여정을 시작해 보겠습니다.

지연 예측 개요

Lazy Predict는 기계 학습에서 모델 선택 및 평가 프로세스의 속도를 높이기 위해 설계된 Python 패키지입니다. 주어진 데이터 세트에서 여러 모델을 자동으로 구축하고 평가하여 각 모델의 성능을 보여주는 포괄적인 요약 보고서를 제공할 수 있습니다. Lazy Predict는 워크플로를 간소화함으로써 데이터 과학자와 기계 학습 실무자에게 필요한 시간과 노력을 줄여줍니다. 다양한 지도형 기계 학습 모델을 지원하므로 사용자는 특정 작업에 가장 적합한 모델을 효율적으로 비교하고 선택할 수 있습니다. Lazy Predict를 사용하면 사용자는 기계 학습 프로젝트를 간소화하여 분석의 다른 중요한 측면에 집중할 수 있는 시간을 확보할 수 있습니다.

설치 및 설정

Lazy Predict의 기능을 살펴보기 전에 먼저 설치 과정을 살펴보겠습니다. pip 패키지 관리자를 사용하면 Lazy Predict를 설치하는 것이 매우 간단합니다.

으아아아

이 명령은 Lazy Predict 라이브러리와 해당 종속성을 시스템에 다운로드하고 설치합니다.

pip를 통해 설치한 후 필요한 클래스와 함수를 가져와서 Lazy Predict를 Python 프로젝트에 원활하게 통합하세요. 강력한 기능을 통해 모델 선택 및 평가를 자동화하여 작업 흐름을 간소화합니다. 모델 성능을 쉽게 분석하고 어떤 모델을 사용할지에 대해 정보에 입각한 결정을 내립니다. Lazy Predict를 활용하면 기계 학습 프로세스의 속도를 높이고 생성된 결과를 해석하고 활용하는 데 더 집중할 수 있습니다.

지연 예측 사용

1단계: 필수 라이브러리 가져오기 및 데이터 세트 로드

먼저 기계 학습 작업에 필요한 기본 라이브러리를 가져옵니다. 예를 들어, 분류 문제를 해결하는 경우 데이터 조작을 위한 팬더, 모델 훈련을 위한 sci−kit-learn, 지연 예측을 위한 LazyClassifier가 필요할 수 있습니다. Lazy Predict의 기능을 활용하도록 감독합니다. 또한 데이터 세트를 Pandas DataFrame에 로드합니다. 예를 들어 보겠습니다.

으아아아

2단계: 데이터를 훈련 세트와 테스트 세트로 분할

이제 sci-kit-learn의 train_test_split 함수를 사용하여 데이터 세트를 훈련 세트와 테스트 세트로 분할합니다. 이를 통해 보이지 않는 데이터에 대한 모델 성능을 평가할 수 있습니다.

예는 다음과 같습니다.

으아아아

3단계: LazyClassifier 인스턴스 생성 및 데이터 피팅

이제 흥미로운 부분이 다가옵니다. LazyClassifier 인스턴스를 생성하고 이를 훈련 데이터에 넣으세요. 이 단계는 Lazy Predict의 놀라운 기능을 활성화하여 여러 기계 학습 모델의 구축 및 평가를 쉽게 자동화합니다. 모델 구축 및 평가의 복잡성을 쉽게 처리하고 다양한 모델의 성능에 대한 포괄적인 이해를 제공하므로 Lazy Predict의 강력한 기능을 확인할 수 있습니다.

예는 다음과 같습니다.

으아아아

위 코드에서는 피팅 과정에서 모델 요약 출력을 억제하기 위해 verbose 매개변수를 0으로 설정했습니다. ignore_warnings 매개변수는 발생할 수 있는 모든 경고 메시지를 무시하기 위해 True로 설정됩니다. custom_metric 매개변수를 사용하면 사용자가 필요에 따라 자체 평가 측정항목을 정의할 수 있습니다.

4단계: 모델 요약 보고서 받기

피팅 프로세스가 완료되면 Lazy Predict 모델 요약 보고서를 받을 수 있습니다. 이 보고서는 제공된 데이터 세트에 대한 다양한 모델의 결과를 비교합니다.

예는 다음과 같습니다.

으아아아

Lazy Predict의 출력은 각 모델의 성능 지표를 보여주는 포괄적인 테이블을 제공합니다. 테이블에는 모델 이름과 해당 정확도, 균형 정확도, F1 점수, 훈련 시간 및 예측 시간이 포함됩니다. 이를 통해 사용자는 다양한 모델의 장단점을 쉽게 비교하고 평가할 수 있습니다. 정확도 측정항목은 모델 예측의 전반적인 정확성을 나타내는 반면, 균형 정확도는 불균형 데이터 세트를 고려합니다.

제한 사항 및 참고 사항

  • 과도한 단순화

    Lazy Predict는 모델에 대한 빠른 평가를 제공하지만 모델 선택 프로세스를 지나치게 단순화할 수 있습니다. 모델 성능에 큰 영향을 미칠 수 있는 모델별 하이퍼파라미터 조정이나 고급 기능 엔지니어링 기술은 고려하지 않습니다.

  • 데이터 세트 크기

    Lazy Predict의 성능은 데이터 세트 크기에 영향을 받으며, 대규모 데이터 세트를 처리할 때 계산 영향을 고려하는 것이 중요합니다. 데이터 세트 크기가 증가함에 따라 여러 모델을 실행하고 평가하는 것은 계산적으로 더 까다롭고 시간이 많이 소요될 수 있습니다.

  • 모델 다양성

    Lazy Predict는 다양한 모델을 지원하지만 일부 특수 모델이나 최첨단 모델은 포함하지 않을 수도 있습니다. 이 경우 사용자는 다른 라이브러리를 탐색하거나 특정 모델을 수동으로 구현해야 할 수도 있습니다.

  • Interpretability

    Lazy Predict는 자세한 모델 설명을 제공하기보다는 성능 평가에 중점을 둡니다. 특정 작업에 해석성이 중요한 경우 사용자는 모델의 내부 작동을 분석하고 이해하기 위해 대체 기술을 사용해야 할 수도 있습니다.

결론

Lazy Predict는 모델 선택 및 평가를 자동화하여 기계 학습 워크플로를 간소화하는 Python 생태계의 귀중한 자산입니다. 모든 수준의 사용자가 시간과 노력을 절약할 수 있으므로 여러 모델을 탐색하고 성능을 비교하며 신속하게 통찰력을 얻을 수 있습니다. 신속한 프로토타이핑, 교육 및 초기 모델 탐색에 이상적인 Lazy Predict는 생산성과 효율성을 높입니다. 그러나 한계를 고려하고 복잡한 작업을 위한 하이퍼파라미터 튜닝 및 기능 엔지니어링과 같은 추가 단계로 보완하는 것이 중요합니다. 전반적으로 Lazy Predict는 기계 학습 툴킷을 크게 향상하고 Python 기반 프로젝트에 도움을 줄 수 있는 강력한 도구입니다.

위 내용은 게으른 예측 라이브러리는 기계 학습을 위한 Python 라이브러리입니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

15가지 추천 오픈 소스 무료 이미지 주석 도구 15가지 추천 오픈 소스 무료 이미지 주석 도구 Mar 28, 2024 pm 01:21 PM

이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! 투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! Apr 12, 2024 pm 05:55 PM

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. Flash Attention은 안정적인가요? Meta와 Harvard는 모델 중량 편차가 ​​수십 배로 변동한다는 사실을 발견했습니다. May 30, 2024 pm 01:24 PM

MetaFAIR는 대규모 기계 학습을 수행할 때 생성되는 데이터 편향을 최적화하기 위한 새로운 연구 프레임워크를 제공하기 위해 Harvard와 협력했습니다. 대규모 언어 모델을 훈련하는 데는 수개월이 걸리고 수백 또는 수천 개의 GPU를 사용하는 것으로 알려져 있습니다. LLaMA270B 모델을 예로 들면, 훈련에는 총 1,720,320 GPU 시간이 필요합니다. 대규모 모델을 교육하면 이러한 워크로드의 규모와 복잡성으로 인해 고유한 체계적 문제가 발생합니다. 최근 많은 기관에서 SOTA 생성 AI 모델을 훈련할 때 훈련 프로세스의 불안정성을 보고했습니다. 이는 일반적으로 손실 급증의 형태로 나타납니다. 예를 들어 Google의 PaLM 모델은 훈련 과정에서 최대 20번의 손실 급증을 경험했습니다. 수치 편향은 이러한 훈련 부정확성의 근본 원인입니다.

See all articles