C++에서 Greedy Best-First 검색 알고리즘 구현
컴퓨터 과학에서 좋은 문제 해결은 GBFS(Greedy Best First Search)와 같은 효율적인 알고리즘에 크게 의존합니다. GBFS는 경로 찾기 또는 최적화 문제에 대한 최상의 솔루션으로 신뢰성을 확립했습니다. 따라서 이 기사에서는 C++를 사용하여 GBFS 구현을 탐색하면서 GBFS에 대해 심층적으로 논의합니다.
문법
으아아아알고리즘
그리디 베스트 우선 검색 알고리즘은 그래프에서 주어진 시작 노드에서 대상 노드까지의 경로를 찾는 것을 목표로 합니다. 알고리즘의 일반적인 단계는 다음과 같습니다 -
빈 우선순위 대기열을 초기화합니다.
시작 노드를 우선순위 큐에 넣습니다.
방문한 노드를 추적하기 위해 빈 세트를 만듭니다.
우선순위 큐가 비어있지 않은 경우 -
대기열에서 우선순위가 가장 높은 노드를 대기열에서 제거합니다.
큐에서 제거된 노드가 대상 노드인 경우 알고리즘이 종료되고 경로를 찾습니다.
그렇지 않으면 대기열 제거 노드를 방문한 것으로 표시하세요.
큐에서 제외된 노드의 방문하지 않은 모든 이웃 노드를 우선순위 큐에 넣습니다.
대상 노드에 도달하기 전에 우선순위 큐가 비어 있으면 경로가 존재하지 않는 것입니다.
방법 1: 유클리드 거리 기반 휴리스틱 함수
예
으아아아출력
으아아아지침
이 코드에는 두 가지 핵심 요소가 포함되어 있습니다. 첫째, 인접 목록을 사용하여 그래프 구조를 나타내는 Graph 클래스의 정의가 포함되어 있습니다.
두 번째로, 유클리드 거리 공식을 사용하여 대상 노드로부터의 거리를 추정하여 노드를 평가하기 위한 사용자 정의 비교기인 CompareEuclideanDistance를 소개합니다.
greedyBestFirstSearch 기능은 탐욕스러운 최고의 우선 검색 알고리즘을 구현합니다. 우선순위 대기열을 사용하여 휴리스틱 값을 기반으로 노드를 저장합니다.
알고리즘은 먼저 시작 노드를 우선순위 대기열에 넣습니다.
각 반복에서 우선순위가 가장 높은 노드를 대기열에서 제거하고 대상 노드인지 확인합니다.
대상 노드를 찾으면 "Path Found!"라는 메시지가 인쇄됩니다. 그렇지 않으면 알고리즘은 대기열에서 제거된 노드를 방문한 것으로 표시하고 방문하지 않은 인접 노드를 대기열에 추가합니다.
우선순위 큐가 비어 있고 대상 노드를 찾을 수 없으면 "경로가 존재하지 않습니다!"라는 메시지가 인쇄됩니다.
주 함수는 그래프를 생성하고, 시작 노드와 대상 노드를 정의하고,greedyBestFirstSearch 함수를 호출하여 알고리즘의 사용법을 보여줍니다.
방법 2: 맨해튼 거리에 따른 휴리스틱 함수
이 문제를 해결하기 위한 우리의 전략에는 맨해튼 거리 개념에 의존하는 휴리스틱 기능의 사용이 필요합니다. 유도 거리라고도 하는 이 거리 측정에는 노드 사이의 수평 및 수직 거리를 추가하는 작업이 포함됩니다.
예
으아아아출력
으아아아지침
이 코드는 방법 1과 유사한 구조를 따르지만 맨해튼 거리 공식을 사용하여 대상 노드까지의 예상 거리를 기준으로 노드를 비교하는 사용자 지정 비교기 CompareManhattanDistance를 사용합니다.
greedyBestFirstSearch 기능은 맨해튼 거리 휴리스틱을 사용하여 그리디 베스트 우선 검색 알고리즘을 구현합니다.
메인 함수는 알고리즘의 사용법을 보여주고, 그래프를 생성하고, 시작 노드와 대상 노드를 정의하고,greedyBestFirstSearch 함수를 호출합니다.
결론
이 기사에서는 탐욕스러운 최고 우선 검색 알고리즘과 C++에서의 구현을 살펴봅니다. 이러한 방법을 사용함으로써 프로그래머는 그래프에서 경로를 효율적으로 찾고 최적화 문제를 해결할 수 있습니다. 유클리드 거리 또는 맨해튼 거리와 같은 경험적 기능의 선택은 다양한 시나리오에서 알고리즘 성능에 큰 영향을 미칠 수 있습니다.
위 내용은 C++에서 Greedy Best-First 검색 알고리즘 구현의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C의 DMA는 직접 메모리 액세스 기술인 DirectMemoryAccess를 말하며 하드웨어 장치는 CPU 개입없이 데이터를 메모리로 직접 전송할 수 있습니다. 1) DMA 운영은 하드웨어 장치 및 드라이버에 크게 의존하며 구현 방법은 시스템마다 다릅니다. 2) 메모리에 직접 액세스하면 보안 위험이 발생할 수 있으며 코드의 정확성과 보안이 보장되어야합니다. 3) DMA는 성능을 향상시킬 수 있지만 부적절하게 사용하면 시스템 성능이 저하 될 수 있습니다. 실습과 학습을 통해 우리는 DMA 사용 기술을 습득하고 고속 데이터 전송 및 실시간 신호 처리와 같은 시나리오에서 효과를 극대화 할 수 있습니다.
