ICCV 2023 Oral | 오픈 월드에서 테스트 세그먼트 교육을 수행하는 방법은 무엇입니까? 동적 프로토타입 확장을 기반으로 한 자가 훈련 방법
시각 기반 인식 방법의 구현을 촉진할 때 모델의 일반화 능력을 향상시키는 것이 중요한 기반입니다. 테스트 시간 훈련/적응(Test-Time Training/Adaptation)은 테스트 단계에서 모델 매개변수 가중치를 조정하여 모델이 알 수 없는 대상 도메인 데이터 분포에 적응할 수 있도록 합니다. 기존 TTT/TTA 방법은 일반적으로 폐쇄된 환경의 대상 도메인 데이터에서 테스트 세그먼트 훈련 성능을 향상시키는 데 중점을 둡니다. 그러나 많은 응용 시나리오에서 대상 도메인은 강력한 도메인 외부 데이터(Strong OOD)에 의해 쉽게 오염됩니다. 예를 들어 의미상 관련이 없는 데이터 카테고리입니다. OWTTT(Open World Test Segment Training)라고도 하는 이 경우 기존 TTT/TTA는 일반적으로 강력한 도메인 외부 데이터를 알려진 카테고리로 강제 분류하여 궁극적으로 다음과 같은 약한 도메인 외부 데이터(Weak OOD)를 방해합니다. 소음으로 인해 방해받는 이미지의 인식 능력
최근 남중국 공과대학과 A*STAR 팀은 처음으로 오픈 월드 테스트 세그먼트 훈련 설정을 제안하고 해당 훈련 방법을 출시했습니다

- Paper : https:/ /arxiv.org/abs/2308.09942
- 다시 작성해야 하는 내용은 다음과 같습니다. 코드 링크: https://github.com/Yushu-Li/OWTTT
- 이 글은 먼저 강력한 적응형 임계값 도메인 외부 데이터 샘플 필터링 방법은 개방형 세계에서 자체 학습 TTT 방법의 견고성을 향상시킵니다. 이 방법은 약한/강한 도메인 외부 데이터 분리 효과를 향상시키기 위해 동적으로 확장된 프로토타입을 기반으로 강한 도메인 외부 샘플을 특성화하는 방법을 추가로 제안합니다. 마지막으로, 자가 훈련은 분포 정렬에 의해 제한됩니다.
이 기사의 방법은 5개의 서로 다른 OWTTT 벤치마크에서 최적의 성능을 달성하고, 보다 강력한 TTT 방법을 탐색하기 위한 TTT에 대한 후속 연구에 새로운 방향을 제공합니다. 해당 연구는 ICCV 2023에 구두 논문으로 승인되었습니다.
소개테스트 세그먼트 훈련(TTT)은 추론 단계 중에만 대상 도메인 데이터에 액세스하고 분포 이동 테스트 데이터에 대해 즉석 추론을 수행할 수 있습니다. TTT의 성공은 인위적으로 선택된 다수의 합성 손상된 대상 도메인 데이터에서 입증되었습니다. 그러나 기존 TTT 방법의 기능 경계는 완전히 탐색되지 않았습니다.
개방형 시나리오에서 TTT 애플리케이션을 홍보하기 위해 연구 초점은 TTT 방법이 실패할 수 있는 시나리오 조사로 옮겨졌습니다. 보다 현실적인 개방형 환경에서 안정적이고 강력한 TTT 방법을 개발하기 위해 많은 노력이 이루어졌습니다. 이 작업에서 우리는 일반적이지만 간과되는 개방형 시나리오를 조사합니다. 여기서 대상 도메인에는 소스 도메인과 다른 의미 범주 또는 단순히 무작위 노이즈와 같이 상당히 다른 환경에서 가져온 테스트 데이터 분포가 포함될 수 있습니다.
위의 테스트 데이터를 Strong Out-of-Distribution Data(강한 OOD)라고 부릅니다. 본 연구에서 약한 OOD 데이터라고 불리는 것은 일반적인 합성 손상과 같은 분포 변화가 있는 테스트 데이터입니다. 따라서 이 실제 환경에 대한 기존 작업이 부족하기 때문에 우리는 테스트 데이터가 강력한 OOD 샘플로 오염되는 OWTTT(Open World Test Segment Training)의 견고성을 향상시키는 방법을 모색하게 됩니다. 그림 1: OWTTT 설정 하에서 기존 TTT 방법을 평가한 결과

자체 학습 기반 TTT는 알려진 클래스에 테스트 샘플을 할당해야 하기 때문에 강력한 OOD 샘플을 처리하는 데 어려움이 있습니다. 준지도 학습에 사용된 임계값을 적용하여 일부 신뢰도가 낮은 샘플을 필터링할 수 있지만 모든 강력한 OOD 샘플이 필터링된다는 보장은 없습니다.
대상 도메인 분포를 추정하기 위해 강력한 OOD 샘플을 계산할 때 분포 정렬 기반 방법이 영향을 받습니다. 전역 분포 정렬 [1]과 클래스 분포 정렬 [2] 모두 영향을 받을 수 있으며 특성 분포 정렬이 부정확해질 수 있습니다.- 셀프 트레이닝 프레임워크 하에서 오픈 월드 TTT의 견고성을 향상시키기 위해 기존 TTT 방법의 실패에 대한 잠재적인 이유를 고려하고 두 기술을 결합한 솔루션을 제안했습니다먼저 기준선을 확립하겠습니다. 즉, 원본 도메인 프로토타입을 대상 도메인의 클러스터링을 위한 클러스터 센터로 사용합니다. 거짓 의사 라벨로 인한 자가 학습의 강한 OOD 영향을 완화하기 위해 우리는 강한 OOD 샘플을 거부하는 초매개변수 없는 방법을 제안합니다
- 약한 OOD 샘플과 강한 OOD 샘플의 특징을 더 분리하기 위해 프로토타입 풀링을 통해 선택에 따라 강력한 OOD 샘플 확장. 따라서 자체 훈련을 통해 강력한 OOD 샘플이 새로 확장된 강력한 OOD 프로토타입 주위에 긴밀한 클러스터를 형성할 수 있습니다. 이렇게 하면 소스 도메인과 대상 도메인 간의 배포 조정이 용이해집니다. 우리는 확증 편향의 위험을 줄이기 위해 글로벌 유통 조정을 통해 자체 교육을 정규화할 것을 제안합니다
마지막으로 오픈 월드 TTT 시나리오를 종합하기 위해 CIFAR10-C, CIFAR100-C, ImageNet-C, VisDA-C, ImageNet-R, Tiny-ImageNet, MNIST 및 SVHN 데이터 세트를 채택하고 데이터를 사용합니다. 약한 OOD로 설정하고 다른 사람들은 강력한 OOD에 대한 벤치마크 데이터 세트를 설정합니다. 우리는 이 벤치마크를 오픈 월드 테스트 세그먼트 트레이닝 벤치마크라고 부르며, 이를 통해 향후 더 많은 작업이 보다 현실적인 시나리오에서 테스트 세그먼트 트레이닝의 견고성에 초점을 맞추도록 장려할 수 있기를 바랍니다.
Method
논문은 4개 부분으로 나누어 제안된 방법을 소개합니다.
1) 오픈 월드 테스트 세그먼트의 훈련 작업 설정 개요입니다.
2) 사용 방법 소개프로토타입 클러스터링은 데이터 세트의 샘플을 여러 카테고리로 클러스터링하는 데 사용되는 비지도 학습 알고리즘입니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 이러한 알고리즘은 데이터 마이닝, 패턴 인식 및 이미지 처리와 같은 분야에서 널리 사용됩니다. TTT 구현 및 오픈 월드 테스트 시간 훈련을 위해 프로토타입을 확장하는 방법.
3) 대상 도메인 데이터를다시 작성해야 하는 콘텐츠는 동적 프로토타입 확장에 사용하는 방법을 소개합니다.
4) 프로토타입 클러스터링을 통한Distribution Alignment 소개는 데이터 세트의 샘플을 여러 범주로 클러스터링하는 데 사용되는 비지도 학습 알고리즘입니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 데이터 마이닝, 패턴 인식, 이미지 처리 등의 분야에서 널리 사용되는 이러한 알고리즘이 결합되어 강력한 오픈 월드 테스트 시간 교육이 가능해졌습니다.
다시 작성해야 하는 콘텐츠는 다음과 같습니다. 그림 2: 메서드 개요 다이어그램
작업 설정
TTT의 목표는 소스 도메인 사전 훈련된 모델을 대상 도메인에 적용하는 것입니다. , 여기서 대상 도메인은 상대적으로 원본 도메인에 배포 마이그레이션이 있습니다. 표준 폐쇄형 TTT에서는 소스 도메인과 대상 도메인의 레이블 공간이 동일합니다. 그러나 오픈 월드 TTT에서는 대상 도메인의 레이블 공간에 원본 도메인의 대상 공간이 포함되어 있습니다. 이는 대상 도메인에 보이지 않는 새로운 의미 범주가 있음을 의미합니다.TTT 정의 간의 혼란을 피하기 위해 TTAC를 채택합니다[2] 제안된 순차 테스트 시간 훈련(sTTT) 프로토콜이 평가됩니다. sTTT 프로토콜에 따라 테스트 샘플은 순차적으로 테스트되고 작은 배치의 테스트 샘플을 관찰한 후 모델 업데이트가 수행됩니다. 타임스탬프 t에 도착하는 테스트 샘플에 대한 예측은 t+k(k가 0보다 큼)에 도착하는 테스트 샘플의 영향을 받지 않습니다.프로토타입 클러스터링은 데이터 세트의 샘플을 여러 범주로 클러스터링하는 데 사용되는 비지도 학습 알고리즘입니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 이러한 알고리즘은 데이터 마이닝, 패턴 인식 및 이미지 처리와 같은 분야에서 널리 사용됩니다.
도메인 적응 작업에서 클러스터링을 사용하는 작업[3,4]에서 영감을 받아 테스트 세그먼트 훈련을 대상 도메인 데이터 구조에서 클러스터를 발견하는 것으로 처리합니다. . 대표 프로토타입을 클러스터 중심으로 식별함으로써 클러스터 구조가 대상 도메인에서 식별되고 테스트 샘플이 프로토타입 중 하나 근처에 포함되도록 권장됩니다. 프로토타입 클러스터링은 데이터 세트의 샘플을 여러 범주로 클러스터링하는 데 사용되는 비지도 학습 알고리즘입니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 데이터 마이닝, 패턴 인식, 이미지 처리 등의 분야에서 널리 사용되는 이러한 알고리즘의 목표는 그림과 같이 샘플과 클러스터 중심 간의 코사인 유사성의 음의 로그 우도 손실을 최소화하는 것으로 정의됩니다. 다음 방정식. 우리는 모델 가중치 조정의 부정적인 영향을 피하기 위해 강한 OOD 샘플을 필터링하는 초매개변수 없는 방법을 개발했습니다. 구체적으로 다음 방정식에 표시된 것처럼 각 테스트 샘플에 대한 강력한 OOD 점수 os를 소스 도메인 프로토타입과의 가장 높은 유사성으로 정의합니다.그림 3 이중 피크 분포
그림 3과 같이 이탈 값이 이중 피크 분포를 따르는 것을 관찰합니다. 따라서 고정된 임계값을 지정하는 대신 두 분포를 구분하는 가장 좋은 값으로 최적 임계값을 정의합니다. 구체적으로 문제는 이상값을 두 개의 클러스터로 나누는 것으로 공식화될 수 있으며 최적의 임계값은 에서 클러스터 내 분산을 최소화합니다. 다음 방정식의 최적화는 0.01 단계에서 0부터 1까지 가능한 모든 임계값을 철저하게 검색하여 효율적으로 달성할 수 있습니다. 다시 작성해야 할 사항은 다음과 같습니다. 동적 프로토타입 확장
강한 OOD 프로토타입 풀을 확장하려면 테스트 샘플을 평가하기 위해 소스 도메인과 강력한 OOD 프로토타입을 모두 고려해야 합니다. 데이터로부터 클러스터 수를 동적으로 추정하기 위해 이전 연구에서도 유사한 문제를 조사했습니다. 결정론적 하드 클러스터링 알고리즘 DP-평균[5]은 알려진 클러스터 중심까지 데이터 포인트의 거리를 측정하여 개발되었으며, 거리가 임계값을 초과하면 새로운 클러스터가 초기화됩니다. DP-평균은 K-평균 목표를 최적화하는 것과 동일하지만 클러스터 수에 대한 추가 페널티가 있어 재작성이 필요한 동적 프로토타입 확장을 위한 실행 가능한 솔루션을 제공하는 것으로 나타났습니다.
추가 하이퍼파라미터 추정의 어려움을 완화하기 위해 먼저 기존 소스 도메인 프로토타입과 강한 OOD 프로토타입에 가장 가까운 거리로 확장된 강한 OOD 점수를 갖는 테스트 샘플을 다음과 같이 정의합니다. 따라서 이 임계값을 초과하는 샘플을 테스트하면 새로운 프로토타입이 구축됩니다. 근처에 테스트 샘플을 추가하지 않기 위해 이 프로토타입 확장 프로세스를 점진적으로 반복합니다. 다른 강력한 OOD 프로토타입이 식별되어 샘플 테스트를 위한 프로토타입을 정의했습니다. 클러스터링은 데이터 세트의 샘플을 여러 범주로 클러스터링하는 데 사용되는 비지도 학습 알고리즘입니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 이러한 알고리즘은 데이터 마이닝, 패턴 인식 및 이미지 처리와 같은 분야에서 널리 사용됩니다. 손실은 두 가지 요소를 고려합니다. 첫째, 알려진 클래스로 분류된 테스트 샘플은 프로토타입에 더 가깝고 다른 프로토타입과는 멀리 떨어져 있어야 하며, 이는 K-클래스 분류 작업을 정의합니다. 둘째, 강력한 OOD 프로토타입으로 분류된 테스트 샘플은 K+1 클래스 분류 작업을 정의하는 소스 도메인 프로토타입과 멀리 떨어져 있어야 합니다. 이러한 목표를 염두에 두고 데이터세트의 샘플을 개별 범주로 클러스터링하는 데 사용되는 비지도 학습 알고리즘인 클러스터링의 프로토타입을 작성했습니다. 프로토타입 클러스터링에서 각 범주는 하나 이상의 프로토타입으로 표시되며, 프로토타입은 데이터 세트의 샘플이거나 일부 규칙에 따라 생성될 수 있습니다. 프로토타입 클러스터링의 목표는 샘플과 해당 카테고리의 프로토타입 사이의 거리를 최소화하여 클러스터링을 달성하는 것입니다. 일반적인 프로토타입 클러스터링 알고리즘에는 K-평균 클러스터링 및 가우스 혼합 모델이 포함됩니다. 이러한 알고리즘은 데이터 마이닝, 패턴 인식, 이미지 처리 등의 분야에서 널리 사용됩니다. 손실은 다음 공식으로 정의됩니다.
Distribution Alignment Constraints
자가 훈련은 잘못된 의사 레이블에 취약하다는 것이 잘 알려져 있습니다. 대상 도메인이 OOD 샘플로 구성되면 상황은 더욱 악화됩니다. 실패 위험을 줄이기 위해 다음과 같이 자가 훈련을 위한 정규화로 분포 정렬 [1]을 추가로 사용합니다.
Experiments 저희는 손상된 합성 데이터세트와 스타일이 다양한 데이터세트를 포함한 5개의 서로 다른 OWTTT 벤치마크 데이터세트를 테스트했습니다. 실험에서는 주로 약한 OOD 분류 정확도 ACCS, 강한 OOD 분류 정확도 ACCN 및 두 ACCH의 조화 평균이라는 세 가지 평가 지표를 사용합니다. 표 2 Cifar100-C 데이터 세트의 다양한 방법 성능 3 ImageNet-C 데이터 세트의 다양한 방법 성능 표 4 다양한 방법의 성능 ImageNet-R 데이터 세트 ~ 표 5 다양한 방법의 VisDA-C 데이터 세트의 성능 위 표에서 볼 수 있듯이 우리 방법은 VisDA-C 방법에 비해 크게 향상되었습니다. 거의 모든 데이터 세트에 대한 현재 최고의 방법을 사용하여 강력한 OOD 샘플을 효과적으로 식별하고 약한 OOD 샘플 분류에 미치는 영향을 줄일 수 있습니다. 우리의 방법은 오픈 월드 시나리오에서 더욱 강력한 TTT를 달성할 수 있습니다. 내용을 요약할 때 원래의 의미를 그대로 유지하고 언어를 중국어로 다시 작성해야 합니다 이 글에서는 OWTTT(Open World Test Segment Training)의 문제점과 설정을 처음으로 제안하며 기존의 문제점을 지적합니다. 의미론적 오프셋이 있는 강력한 OOD 샘플의 대상 도메인 데이터는 종종 어려움에 직면하며 위의 문제를 해결하기 위해 콘텐츠를 다시 작성해야 하는 자체 학습 방법이 제안됩니다. 우리는 이 연구가 TTT에 대한 후속 연구에 새로운 방향을 제공하여 보다 강력한 TTT 방법을 탐색할 수 있기를 바랍니다.
참고 자료: [2] Yongyi Su, Xun Xu, Kui Jia. 현실적인 테스트 시간 훈련 재검토: 고정 클러스터링을 통한 순차적 추론 및 적응, 2022년. .
[1] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan 및 Alexandre Ttt++: 자기 감독형 시험 시간 훈련은 언제 실패하거나 성공합니까? 신경 정보 처리 시스템의 발전, 2021.[3] 탕후이와 지아쿠이. 차별적인 적대적 도메인 적응. AAAI Conference on Artificial Intelligence, 34권, 페이지 5940-5947, 2020
[4] 사이토 쿠니아키, 야마모토 쇼헤이, 우시쿠 요시타카, 하라다 타츠야 유럽 컨퍼런스에서. 컴퓨터 비전, 2018.
[5] 브라이언 쿨리스(Brian Kulis)와 마이클 I 조던(Michael I Jordan). k-평균 재검토: 베이지안 비모수적 방법을 통한 새로운 알고리즘. 2012년 머신러닝 국제 컨퍼런스에서
위 내용은 ICCV 2023 Oral | 오픈 월드에서 테스트 세그먼트 교육을 수행하는 방법은 무엇입니까? 동적 프로토타입 확장을 기반으로 한 자가 훈련 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











확산은 더 잘 모방할 수 있을 뿐만 아니라 "창조"할 수도 있습니다. 확산 모델(DiffusionModel)은 이미지 생성 모델입니다. AI 분야에서 잘 알려진 GAN, VAE 알고리즘과 비교할 때 확산 모델은 먼저 이미지에 노이즈를 추가한 다음 점차적으로 노이즈를 제거하는 프로세스를 취합니다. 원본 이미지의 노이즈를 제거하고 복원하는 방법이 알고리즘의 핵심 부분입니다. 최종 알고리즘은 임의의 잡음이 있는 이미지에서 이미지를 생성할 수 있습니다. 최근 몇 년 동안 생성 AI의 경이적인 성장으로 인해 텍스트-이미지 생성, 비디오 생성 등에서 많은 흥미로운 애플리케이션이 가능해졌습니다. 이러한 생성 도구의 기본 원리는 이전 방법의 한계를 극복하는 특수 샘플링 메커니즘인 확산의 개념입니다.

키미: 단 한 문장이면 단 10초만에 PPT가 완성됩니다. PPT가 너무 짜증나네요! 회의를 하려면 PPT가 있어야 하고, 주간 보고서를 작성하려면 PPT가 있어야 하며, 누군가를 부정행위를 했다고 비난하려면 PPT를 보내야 합니다. 대학은 PPT 전공을 공부하는 것과 비슷합니다. 수업 시간에 PPT를 보고 수업 후에 PPT를 하는 거죠. 아마도 데니스 오스틴이 37년 전 PPT를 발명했을 때, 언젠가 PPT가 이렇게 널리 보급될 것이라고는 예상하지 못했을 것입니다. 우리가 PPT를 만들면서 힘들었던 경험을 이야기하면 눈물이 납니다. "20페이지가 넘는 PPT를 만드는 데 3개월이 걸렸고, 수십 번 수정했어요. PPT를 보면 토할 것 같았어요. 한창 때는 하루에 다섯 장씩 했는데, 숨소리까지 냈어요." PPT였어요." 즉석 회의가 있으면 해야죠.

베이징 시간으로 6월 20일 이른 아침, 시애틀에서 열린 최고의 국제 컴퓨터 비전 컨퍼런스인 CVPR2024가 최우수 논문 및 기타 수상작을 공식 발표했습니다. 올해는 우수논문 2편, 최우수 학생논문 2편 등 총 10편의 논문이 수상하였습니다. 컴퓨터 비전(CV) 분야 최고 학회는 매년 수많은 연구기관과 대학이 모여드는 CVPR이다. 통계에 따르면 올해 총 1만1532편의 논문이 제출돼 2719편이 채택돼 합격률 23.6%를 기록했다. Georgia Institute of Technology의 CVPR2024 데이터 통계 분석에 따르면 연구 주제 관점에서 가장 많은 논문이 이미지 및 비디오 합성 및 생성입니다(Imageandvideosyn

우리는 LLM이 대규모 데이터를 사용하여 대규모 컴퓨터 클러스터에서 훈련된다는 것을 알고 있습니다. 이 사이트는 LLM 훈련 프로세스를 지원하고 개선하는 데 사용되는 다양한 방법과 기술을 소개합니다. 오늘 우리가 공유하고 싶은 것은 기본 기술에 대해 심층적으로 살펴보고 운영 체제 없이도 수많은 "베어 메탈"을 LLM 교육을 위한 컴퓨터 클러스터로 전환하는 방법을 소개하는 기사입니다. 이 기사는 기계가 생각하는 방식을 이해하여 일반 지능을 달성하기 위해 노력하는 AI 스타트업 Imbue에서 가져온 것입니다. 물론 운영 체제가 없는 "베어 메탈"을 LLM 교육을 위한 컴퓨터 클러스터로 전환하는 것은 탐색과 시행착오로 가득 찬 쉬운 과정이 아니지만 Imbue는 마침내 700억 개의 매개변수를 사용하여 LLM을 성공적으로 교육했습니다. 과정이 쌓이다

널리 사용되는 프로그래밍 언어인 C언어는 컴퓨터 프로그래밍에 종사하려는 사람들이 꼭 배워야 할 기본 언어 중 하나이다. 그러나 초보자의 경우 새로운 프로그래밍 언어를 배우는 것이 다소 어려울 수 있습니다. 특히 관련 학습 도구와 교육 자료가 부족하기 때문입니다. 이번 글에서는 초보자가 C 언어를 시작하고 빠르게 시작할 수 있도록 도와주는 프로그래밍 소프트웨어 5가지를 소개하겠습니다. 최초의 프로그래밍 소프트웨어는 Code::Blocks였습니다. Code::Blocks는 무료 오픈 소스 통합 개발 환경(IDE)입니다.

PyCharm Community Edition 빠른 시작: 자세한 설치 튜토리얼 전체 분석 소개: PyCharm은 개발자가 Python 코드를 보다 효율적으로 작성하는 데 도움이 되는 포괄적인 도구 세트를 제공하는 강력한 Python 통합 개발 환경(IDE)입니다. 이 문서에서는 PyCharm Community Edition을 설치하는 방법을 자세히 소개하고 초보자가 빠르게 시작할 수 있도록 구체적인 코드 예제를 제공합니다. 1단계: PyCharm Community Edition 다운로드 및 설치 PyCharm을 사용하려면 먼저 공식 웹사이트에서 다운로드해야 합니다.

Machine Power Report 편집자: Yang Wen 대형 모델과 AIGC로 대표되는 인공지능의 물결은 우리가 살고 일하는 방식을 조용히 변화시키고 있지만 대부분의 사람들은 여전히 그것을 어떻게 사용하는지 모릅니다. 이에 직관적이고 흥미롭고 간결한 인공지능 활용 사례를 통해 AI 활용 방법을 자세히 소개하고 모두의 사고를 자극하고자 'AI in Use' 칼럼을 론칭하게 됐다. 또한 독자들이 혁신적인 실제 사용 사례를 제출하는 것을 환영합니다. 영상 링크 : https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ 최근 샤오홍슈에서는 혼자 사는 소녀의 인생 브이로그가 인기를 끌었습니다. 몇 가지 치유의 말과 함께 일러스트레이션 스타일의 애니메이션을 단 며칠 만에 쉽게 익힐 수 있습니다.

제목: 기술 초보자가 꼭 읽어야 할 책: C언어와 Python의 난이도 분석, 구체적인 코드 예제가 필요한 오늘날의 디지털 시대에 프로그래밍 기술은 점점 더 중요한 능력이 되었습니다. 소프트웨어 개발, 데이터 분석, 인공 지능과 같은 분야에서 일하고 싶거나 관심 있는 프로그래밍을 배우고 싶다면 적합한 프로그래밍 언어를 선택하는 것이 첫 번째 단계입니다. 많은 프로그래밍 언어 중에서 C 언어와 Python은 널리 사용되는 두 가지 프로그래밍 언어이며 각각 고유한 특성을 가지고 있습니다. 이번 글에서는 C언어와 Python의 난이도를 분석해보겠습니다.
