Python에서 깊이 우선 검색 알고리즘을 작성하는 방법은 무엇입니까?
Python에서 깊이 우선 검색 알고리즘을 작성하는 방법은 무엇입니까?
DFS(깊이 우선 검색)는 일반적으로 사용되는 그래프 순회 알고리즘입니다. 깊이 우선 탐색에서는 시작 노드부터 시작하여 더 이상 탐색이 불가능할 때까지 인접 노드를 계속 탐색한 다음 이전 노드로 돌아가 모든 노드를 방문할 때까지 탐색되지 않은 인접 노드를 계속 탐색합니다.
다음은 Python으로 작성된 깊이 우선 검색 알고리즘의 예입니다.
# 定义图的类 class Graph: def __init__(self, vertices): self.V = vertices # 节点数量 self.adj = [[] for _ in range(self.V)] # 存储节点的邻接节点 # 添加边 def add_edge(self, u, v): self.adj[u].append(v) # DFS递归函数 def dfs_util(self, u, visited): visited[u] = True # 标记当前节点为已访问 print(u, end=' ') # 输出当前节点 # 遍历当前节点的所有邻接节点 for i in self.adj[u]: if not visited[i]: self.dfs_util(i, visited) # 对外接口,执行DFS def dfs(self, u): visited = [False] * self.V # 标记所有节点均未访问 self.dfs_util(u, visited) # 测试代码 if __name__ == '__main__': # 创建一个具有4个节点的图 g = Graph(4) # 添加图的边 g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) print("深度优先遍历结果:") g.dfs(2)
위 코드는 Graph 클래스를 구현하여 초기 노드 수와 인접 노드 정의를 포함하는 그래프의 구조를 나타냅니다. 그런 다음 가장자리 add_edge
를 추가하는 함수가 정의됩니다. add_edge
。
DFS算法在dfs_util
递归函数的辅助下进行,函数接受两个参数:当前节点u
和一个数组visited
,用于标记节点是否已经访问。算法首先将当前节点标记为已访问,并输出该节点的值。然后遍历当前节点的所有邻接节点,如果邻接节点尚未被访问,则递归调用dfs_util
函数。
最后,dfs
函数作为对外接口,接受起始节点作为参数,并创建一个visited
数组初始化为False。调用dfs_util
dfs_util
재귀 함수의 도움으로 수행됩니다. 이 함수는 현재 노드 u
와 방문한
배열이라는 두 가지 매개변수를 허용합니다. 노드를 방문했는지 여부를 표시합니다. 알고리즘은 먼저 현재 노드를 방문한 것으로 표시하고 노드의 값을 출력합니다. 그런 다음 현재 노드의 모든 인접 노드를 탐색합니다. 인접 노드를 아직 방문하지 않은 경우 dfs_util
함수를 재귀적으로 호출합니다. 마지막으로 dfs
함수는 외부 인터페이스 역할을 하고 시작 노드를 매개변수로 받아들이고 False로 초기화된 visited
배열을 생성합니다. DFS 탐색을 시작하려면 dfs_util
함수를 호출하세요. 테스트 코드에서는 4개의 노드가 있는 그래프를 만들고 일부 간선을 추가했습니다. 그런 다음 시작 노드 2를 사용하여 DFS 순회를 수행하고 결과를 출력합니다. 🎜🎜이 코드 예제가 Python에서 깊이 우선 검색 알고리즘을 작성하는 방법을 이해하는 데 도움이 되기를 바랍니다. 필요에 따라 코드를 수정하고 최적화할 수도 있습니다. 🎜위 내용은 Python에서 깊이 우선 검색 알고리즘을 작성하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.
