Taotian Group과 Aicheng Technology가 협력하여 오픈 소스 대규모 모델 훈련 프레임워크인 Megatron-LLaMA 출시
9월 12일, Taotian Group과 Aicheng Technology는 대규모 모델 훈련 프레임워크인 Megatron-LLaMA를 공식적으로 오픈 소스로 공개했습니다. 이는 기술 개발자가 보다 편리하게 대규모 언어 모델의 훈련 성능을 개선하고 훈련 비용을 절감하며 LLaMA와의 호환성을 유지할 수 있도록 하는 것을 목표로 합니다. 지역 사회. 테스트 결과에 따르면 Megatron-LLaMA는 HuggingFace에서 직접 얻은 코드 버전에 비해 176%의 가속을 달성할 수 있으며 대규모 교육에서는 32개 카드에 비해 거의 선형 확장성을 보여줍니다. 네트워크 불안정 때문입니다. 현재 Megatron-LLaMA는 오픈 소스 커뮤니티에서 온라인 상태입니다.
오픈 소스 주소: https://github.com/alibaba/Megatron-LLaMA

32개 카드 트레이닝에서 HuggingFace에서 직접 얻은 코드 버전과 비교하여 Megatron-LLaMA는 DeepSpeed 및 FlashAttention으로 최적화된 버전에서도 176% 가속을 달성할 수 있지만 Megatron-LLaMA는 여전히 훈련 시간을 최소 19% 단축합니다. - 대규모 훈련에서 Megatron-LLaMA는 32개 카드에 비해
거의 선형 확장성을 갖습니다. 예를 들어 LLaMA-13B의 훈련을 재현하기 위해 512 A100을 사용하면 Megatron-LLaMA의 역방향 메커니즘은 기본 Megatron-LM의 DistributedOptimizer에 비해 정확도 손실 없이 최소 2일을 절약할 수 있습니다. - Megatron-LLaMA는 네트워크 불안정성에 대한 높은 내성을 보여줍니다. 4x200Gbps 통신 대역폭을 갖춘 현재 비용 효율적인 8xA100-80GB 훈련 클러스터에서도(이 환경은 일반적으로 혼합 배포 환경이므로 네트워크는 대역폭의 절반만 사용할 수 있으며 네트워크 대역폭은 심각한 병목 현상이 발생하지만 임대 가격은 상대적으로 저렴합니다) 낮음) Megatron-LLaMA는 여전히 0.85의 선형 확장 성능을 달성할 수 있지만 Megatron-LM은 이 지표에서 0.7 미만의 성능만 달성할 수 있습니다. -MEGATRON-LM 기술은 고성능 LLAMA 교육 기회를 제공합니다.
Llama는 대규모 언어 모델의 오픈 소스 커뮤니티에서 중요한 작업입니다. LLaMA는 BPE 문자 인코딩, RoPE 위치 인코딩, SwiGLU 활성화 함수, RMSNorm 정규화, Untied Embedding 등의 최적화 기술을 LLM의 구조에 도입하여 수많은 객관적, 주관적 평가에서 우수한 결과를 얻었습니다. LLaMA는 다양한 대형 모델 수요 시나리오에 적합하고 대다수 개발자가 선호하는 7B, 13B, 30B, 65B/70B 버전을 제공합니다. 많은 오픈소스 대형 모델과 마찬가지로 공식적으로는 코드의 추론 버전만 제공하기 때문에 가장 저렴한 비용으로 효율적인 학습을 수행하는 방법에 대한 표준 패러다임이 없습니다. Megatron-LM은 품격 있는 고성능 교육 솔루션입니다.Megatron-LM은 텐서 병렬성(병렬 컴퓨팅을 위해 여러 카드에 큰 곱셈을 할당하는 Tensor Parallel, TP), 파이프라인 병렬성(처리를 위해 모델의 서로 다른 레이어를 서로 다른 카드에 할당하는 파이프라인 병렬, PP) 및 시퀀스 병렬성(Pipeline Parallel, PP)을 제공합니다. Sequence Parallel, SP, 시퀀스의 다른 부분이 다른 카드로 처리되어 비디오 메모리 절약) DistributedOptimizer 최적화(DeepSpeed Zero Stage-2와 유사, 모든 컴퓨팅 노드에 그라디언트 및 최적화 매개 변수 분할) 및 기타 기술을 통해 크게 줄일 수 있습니다. 비디오 메모리 사용량을 늘리고 GPU 활용도를 향상시킵니다. Megatron-LM은 활발한 오픈 소스 커뮤니티를 운영하고 있으며, 새로운 최적화 기술과 기능 설계가 프레임워크에 계속 통합되고 있습니다.그러나 Megatron-LM을 기반으로 개발하는 것은 간단하지 않으며 값비싼 멀티 카드 머신에서의 디버깅 및 기능 검증은 훨씬 더 비쌉니다. Megatron-LLaMA는 먼저 Megatron-LM 프레임워크를 기반으로 한 LLaMA 교육 코드 세트를 제공하고 다양한 크기의 모델 버전을 지원하며 HuggingFace 형식의 Tokenizer에 대한 직접 지원을 포함하여 LLaMA의 다양한 변형을 지원하도록 쉽게 조정할 수 있습니다. 따라서 Megatron-LLaMA는 과도한 적응 없이 기존 오프라인 훈련 링크에 쉽게 적용될 수 있습니다. LLaMA-7b 및 LLaMA-13b의 중소 규모 교육/미세 조정 시나리오에서 Megatron-LLaMA는 54% 이상의 업계 최고의 하드웨어 활용도(MFU)를 쉽게 달성할 수 있습니다. ???? | Microsoft에서 출시한 기술은 이후의 많은 프레임워크에 매우 중요했습니다. 임팩트에 도달. DeepSpeed ZeRO Stage-2 (이하 ZeRO-2)는 추가적인 계산 및 통신 작업 부하를 추가하지 않고 메모리 사용량을 절약하는 프레임워크 내 기술입니다. 위 그림에 표시된 것처럼 계산 요구 사항으로 인해 각 순위에는 모든 매개변수가 있어야 합니다. 그러나 옵티마이저 상태의 경우 각 순위는 일부만 담당하며 모든 순위가 동시에 완전히 반복되는 작업을 수행할 필요는 없습니다. 따라서 ZeRO-2는 옵티마이저 상태를 각 순위로 균등하게 나눌 것을 제안합니다(각 변수가 특정 순위에서 균등하게 분할되거나 완전히 유지되는지 확인할 필요는 없습니다). 각 순위는 훈련 과정 중에만 사용하면 됩니다. .해당 부품의 최적화 상태 및 모델 매개변수 업데이트를 담당합니다. 이 설정에서는 그라데이션을 이런 방식으로 분할할 수도 있습니다. 기본적으로 ZeRO-2는 Reduce 메서드를 사용하여 모든 Rank 간의 기울기를 역으로 집계한 다음 각 Rank는 자신이 담당하는 매개변수의 일부만 유지하면 되므로 중복된 반복 계산을 제거할 뿐만 아니라 메모리도 줄어듭니다. 용법. . ㅋㅋ Megatron-LM DistributedOptimizer
네이티브 Megatron-LM은 DistributedOptimizer를 통해 ZeRO-2와 유사한 그라데이션 및 최적화 상태 분할을 구현하여 훈련 중 메모리 사용량을 줄입니다. 위 그림과 같이 DistributedOptimizer는 미리 설정된 Gradient로 집계된 Gradient를 모두 얻은 후 ReduceScatter 연산자를 사용하여 이전에 누적된 Gradient를 모두 다른 Rank로 분산시킵니다. 각 순위는 처리해야 하는 그래디언트의 일부만 얻은 다음 최적화 상태와 해당 매개변수를 업데이트합니다. 마지막으로 각 Rank는 AllGather를 통해 다른 노드로부터 업데이트된 매개변수를 획득하고, 최종적으로 모든 매개변수를 획득합니다. 실제 훈련 결과는 Megatron-LM의 기울기 및 매개변수 통신이 다른 계산과 연속적으로 수행되는 것을 보여줍니다. 대규모 사전 훈련 작업의 경우 전체 배치 데이터 크기가 변경되지 않도록 하기 위해 일반적으로 불가능합니다. 더 큰 GA를 엽니다. 따라서, 기계의 증가에 따라 통신의 비중도 증가하게 되는데, 이때 직렬 통신의 특성상 확장성이 매우 약하게 됩니다. 지역사회 내에서도 필요성이 절실합니다. ㅋㅋ Megatron-LLaMA OverlappedDistributedOptimizer
이 문제를 해결하기 위해 Megatron-LLaMA는 기본 Megatron-LM 이미저의 DistributedOpt를 개선하여 기울기 통신 연산자가 계산과 병렬화될 수 있도록 합니다. 특히 Megatron-LLaMA는 ZeRO의 구현에 비해 확장성이 더 뛰어난 집단 통신 방식을 사용하여 병렬성을 전제로 한 최적화 파티셔닝 전략의 영리한 최적화를 통해 확장성을 향상시킵니다.OverlappedDistributedOptimizer의 주요 설계는 다음 사항을 보장합니다. a) 단일 세트 통신 사업자의 데이터 볼륨은 통신 대역폭을 완전히 활용할 수 있을 만큼 충분히 큽니다. b) 새로운 분할 방법에 필요한 통신 데이터의 양은 최소와 같아야 합니다. 데이터 병렬성에 필요한 통신 데이터 볼륨 c) 전체 매개변수 또는 기울기 및 분할된 매개변수 또는 기울기의 변환 프로세스 중에 너무 많은 비디오 메모리 복사본을 도입할 수 없습니다.구체적으로 Megatron-LLaMA는 DistributedOptimizer의 메커니즘을 개선하고 새로운 분할 방법과 결합하여 훈련의 역과정을 최적화하는 데 사용되는 OverlappedDistributedOptimizer를 제안합니다. 위 그림과 같이 OverlappedDistributedOptimizer가 초기화되면 모든 파라미터는 해당 파라미터가 속한 Bucket에 미리 할당됩니다. 버킷의 매개변수는 완전합니다. 매개변수는 하나의 버킷에만 속합니다. 버킷에는 여러 매개변수가 있을 수 있습니다. 논리적으로 각 Bucket은 연속적으로 P(P는 데이터 병렬 그룹의 수) 동일한 부분으로 나누어지며, 데이터 병렬 그룹의 각 Rank는 그 중 하나를 담당합니다. Bucket은 통신 순서를 보장하기 위해 로컬 큐(Local grad bucket queue)에 배치됩니다. 학습 및 계산 과정에서 데이터 병렬 그룹은 버킷 단위의 집단 통신을 통해 필요한 기울기를 교환합니다. Megatron-LLaMA에서 Bucket 구현은 가능한 주소 인덱싱을 사용하고, 필요한 값이 변경될 때만 공간을 새로 할당하여 비디오 메모리 낭비를 방지합니다. 위 설계와 수많은 엔지니어링 최적화가 결합되어 Megatron-LLaMA는 대규모 훈련 중에 하드웨어를 최대한 활용하여 기본 Megatron-LM보다 더 나은 가속을 달성할 수 있습니다. 32개의 A100 카드에서 512개의 A100 카드로 훈련할 때 Megatron-LLaMA는 일반적으로 사용되는 혼합 네트워크 환경에서 여전히 0.85의 확장 비율을 달성할 수 있습니다. -Megatron-Llama의 향후 계획
Megatron-Llama는 Tao Tian Group과 Ai Orange Technology가 공통으로 공개하고 후속 유지 관리 지원을 제공하는 교육 프레임워크로 널리 사용되는 내부 애플리케이션입니다. 점점 더 많은 개발자들이 LLaMA의 오픈 소스 커뮤니티에 모여들고 서로 배울 수 있는 경험을 제공함에 따라 앞으로 교육 프레임워크 수준에서 더 많은 도전과 기회가 있을 것이라고 믿습니다. Megatron-LLaMA는 커뮤니티의 발전에 세심한 주의를 기울이고 개발자와 협력하여 다음 방향을 추진할 것입니다.
적응형 최적 구성 선택더 많은 모델 구조 또는 로컬 설계 변경 지원 - 더 궁극적인 성능 교육 다양한 하드웨어 환경에서의 솔루션프로젝트 주소: https://github.com/alibaba/Megatron-LLaMA
위 내용은 Taotian Group과 Aicheng Technology가 협력하여 오픈 소스 대규모 모델 훈련 프레임워크인 Megatron-LLaMA 출시의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 인공 지능 개발 과정에서 LLM(대형 언어 모델)의 제어 및 안내는 항상 핵심 과제 중 하나였으며 이러한 모델이 두 가지 모두를 보장하는 것을 목표로 했습니다. 강력하고 안전하게 인간 사회에 봉사합니다. 인간 피드백(RL)을 통한 강화 학습 방법에 초점을 맞춘 초기 노력

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

현재 차세대 토큰 예측 패러다임을 사용하는 자동회귀 대규모 언어 모델은 전 세계적으로 인기를 얻고 있으며 동시에 인터넷의 수많은 합성 이미지와 비디오는 이미 확산 모델의 힘을 보여주었습니다. 최근 MITCSAIL 연구팀(그 중 한 명은 MIT 박사 과정 학생인 Chen Boyyuan)이 전체 시퀀스 확산 모델과 차세대 토큰 모델의 강력한 기능을 성공적으로 통합하고 훈련 및 샘플링 패러다임인 확산 강제(DF)를 제안했습니다. ). 논문 제목: DiffusionForcing:Next-tokenPredictionMeetsFull-SequenceDiffusion 논문 주소: https:/
