데이터 베이스 Redis Redis와 Groovy를 활용한 실시간 추천 기능 개발 방법

Redis와 Groovy를 활용한 실시간 추천 기능 개발 방법

Sep 20, 2023 am 11:19 AM
redis groovy 실시간 추천

Redis와 Groovy를 활용한 실시간 추천 기능 개발 방법

Redis 및 Groovy를 사용하여 실시간 추천 기능을 개발하는 방법

소개:
인터넷이 발전하면서 추천 시스템은 많은 애플리케이션에서 중요한 부분이 되었습니다. 추천 시스템은 사용자가 관심 있는 콘텐츠를 빠르게 찾고 사용자 경험을 개선하는 데 도움이 될 수 있습니다. 이 기사에서는 Redis와 Groovy를 사용하여 실시간 추천 기능을 개발하는 방법을 소개하고 구체적인 코드 예제를 제공합니다.

1단계: Redis 환경 구축
먼저 사용자 행동 데이터와 추천 결과를 저장할 Redis 환경을 구축해야 합니다. Redis는 공식 홈페이지(https://redis.io/)나 Docker를 이용하여 설치할 수 있습니다. 설치가 완료되면 Redis 서버를 시작합니다.

2단계: 추천 데이터 준비
추천 시스템의 핵심은 사용자의 행동 데이터입니다. 이 경우 영화 추천을 예로 들어보겠습니다. 먼저, 사용자의 탐색 기록, 수집 기록 등을 포함한 일부 사용자 행동 데이터를 준비해야 합니다. MovieLens 데이터 세트(https://grouplens.org/datasets/movielens/)와 같은 일부 오픈 소스 데이터 세트를 사용하여 사용자 행동 데이터를 시뮬레이션할 수 있습니다.

3단계: Redis에 사용자 행동 데이터 저장
다음으로 Redis에 사용자 행동 데이터를 저장합니다. Redis에서는 해시 데이터 구조를 사용하여 사용자 행동 데이터를 저장할 수 있습니다. 각 사용자의 행동은 Hash 구조로 표현되며, Hash의 키는 사용자의 ID이고, 값은 탐색 기록, 수집 기록 등 사용자의 행동 데이터를 기록하는 Map 구조입니다.

Groovy에서는 Jedis 라이브러리를 사용하여 Redis에 연결할 수 있으며 다음 코드를 사용하여 Redis에 사용자 데이터를 저장할 수 있습니다.

import redis.clients.jedis.Jedis

def jedis = new Jedis("localhost", 6379)

def saveUserBehavior(userId, behaviorData) {
    jedis.hset("user:${userId}", behaviorData)
}

def userId = 1
def behaviorData = ["browse": "movie1", "collect": "movie2"]
saveUserBehavior(userId, behaviorData)
로그인 후 복사

4단계: 실시간 추천 기능 구현
사용자의 행동 데이터를 사용하여 다음을 수행할 수 있습니다. 실시간 추천 기능 구현을 시작합니다. 이 예에서는 협업 필터링 알고리즘을 사용하여 권장 사항을 제시합니다. 구체적인 단계는 다음과 같습니다.

  1. 사용자 간 유사도 계산: 사용자의 행동 데이터를 기반으로 사용자 간 유사도를 계산합니다. 이는 코사인 유사성을 사용하여 계산할 수 있습니다.
  2. 타겟 사용자와 가장 유사한 상위 N 사용자 찾기: 계산된 사용자 유사성을 기반으로 타겟 사용자와 가장 유사한 상위 N 사용자를 찾습니다.
  3. 상위 N 사용자의 선호도 가져오기: 행동 데이터를 기반으로 상위 N 사용자의 선호도를 가져옵니다. 이러한 기본 설정에는 검색 기록, 수집 기록 등이 포함될 수 있습니다.
  4. 대상 사용자가 탐색한 콘텐츠 필터링: 탐색 기록을 기반으로 대상 사용자가 탐색한 콘텐츠를 필터링합니다.
  5. Top M 콘텐츠 추천: 필터링된 콘텐츠를 기반으로 타겟 사용자에게 Top M 콘텐츠를 추천합니다.

Groovy에서는 다음 코드를 사용하여 실시간 추천 기능을 구현할 수 있습니다.

import redis.clients.jedis.Jedis

def jedis = new Jedis("localhost", 6379)

def getSimilarUsers(targetUserId, n) {
    // 根据用户的行为数据计算相似度
    //...
    
    // 找到与目标用户最相似的Top N个用户
    //...
    
    return similarUsers
}

def getRecommendations(targetUserId, m) {
    def similarUsers = getSimilarUsers(targetUserId, 5)
    def recommendations = []

    similarUsers.each { userId ->
        // 根据用户的行为数据获取用户的喜好
        //...
        
        // 过滤掉已经浏览过的内容
        //...
        
        // 将新的内容添加到推荐列表中
        //...
    }

    return recommendations.take(m)
}

def targetUserId = 1
def recommendations = getRecommendations(targetUserId, 10)
println recommendations
로그인 후 복사

결론:
Redis와 Groovy를 이용하면 실시간 추천 기능을 쉽게 구현할 수 있습니다. 먼저 Redis에 사용자 행동 데이터를 저장한 다음 협업 필터링 알고리즘을 사용하여 이러한 데이터를 기반으로 권장 사항을 제시합니다. Redis는 고성능 데이터 저장 및 쿼리 기능을 제공하고, Groovy는 간단하고 이해하기 쉬운 구문을 제공하여 추천 시스템 개발을 더 쉽게 만듭니다.

위 예시는 단순한 예시일 뿐 실제 추천 시스템은 더 복잡할 수 있습니다. 요구 사항이 더 높은 경우 알고리즘과 코드를 더욱 최적화하여 실제 애플리케이션의 요구 사항을 충족할 수 있습니다.

위 내용은 Redis와 Groovy를 활용한 실시간 추천 기능 개발 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Redis 클러스터 모드를 구축하는 방법 Redis 클러스터 모드를 구축하는 방법 Apr 10, 2025 pm 10:15 PM

Redis Cluster Mode는 Sharding을 통해 Redis 인스턴스를 여러 서버에 배포하여 확장 성 및 가용성을 향상시킵니다. 시공 단계는 다음과 같습니다. 포트가 다른 홀수 redis 인스턴스를 만듭니다. 3 개의 센티넬 인스턴스를 만들고, Redis 인스턴스 및 장애 조치를 모니터링합니다. Sentinel 구성 파일 구성, Redis 인스턴스 정보 및 장애 조치 설정 모니터링 추가; Redis 인스턴스 구성 파일 구성, 클러스터 모드 활성화 및 클러스터 정보 파일 경로를 지정합니다. 각 redis 인스턴스의 정보를 포함하는 Nodes.conf 파일을 작성합니다. 클러스터를 시작하고 Create 명령을 실행하여 클러스터를 작성하고 복제본 수를 지정하십시오. 클러스터에 로그인하여 클러스터 정보 명령을 실행하여 클러스터 상태를 확인하십시오. 만들다

Redis 데이터를 지우는 방법 Redis 데이터를 지우는 방법 Apr 10, 2025 pm 10:06 PM

Redis 데이터를 지우는 방법 : Flushall 명령을 사용하여 모든 키 값을 지우십시오. FlushDB 명령을 사용하여 현재 선택한 데이터베이스의 키 값을 지우십시오. 선택을 사용하여 데이터베이스를 전환 한 다음 FlushDB를 사용하여 여러 데이터베이스를 지우십시오. del 명령을 사용하여 특정 키를 삭제하십시오. Redis-Cli 도구를 사용하여 데이터를 지우십시오.

Redis 명령을 사용하는 방법 Redis 명령을 사용하는 방법 Apr 10, 2025 pm 08:45 PM

Redis 지시 사항을 사용하려면 다음 단계가 필요합니다. Redis 클라이언트를 엽니 다. 명령 (동사 키 값)을 입력하십시오. 필요한 매개 변수를 제공합니다 (명령어마다 다름). 명령을 실행하려면 Enter를 누르십시오. Redis는 작업 결과를 나타내는 응답을 반환합니다 (일반적으로 OK 또는 -err).

Redis 대기열을 읽는 방법 Redis 대기열을 읽는 방법 Apr 10, 2025 pm 10:12 PM

Redis의 대기열을 읽으려면 대기열 이름을 얻고 LPOP 명령을 사용하여 요소를 읽고 빈 큐를 처리해야합니다. 특정 단계는 다음과 같습니다. 대기열 이름 가져 오기 : "큐 :"와 같은 "대기열 : my-queue"의 접두사로 이름을 지정하십시오. LPOP 명령을 사용하십시오. 빈 대기열 처리 : 대기열이 비어 있으면 LPOP이 NIL을 반환하고 요소를 읽기 전에 대기열이 존재하는지 확인할 수 있습니다.

Redis Lock을 사용하는 방법 Redis Lock을 사용하는 방법 Apr 10, 2025 pm 08:39 PM

Redis를 사용하여 잠금 작업을 사용하려면 SetNX 명령을 통해 잠금을 얻은 다음 만료 명령을 사용하여 만료 시간을 설정해야합니다. 특정 단계는 다음과 같습니다. (1) SETNX 명령을 사용하여 키 값 쌍을 설정하십시오. (2) 만료 명령을 사용하여 잠금의 만료 시간을 설정하십시오. (3) DEL 명령을 사용하여 잠금이 더 이상 필요하지 않은 경우 잠금을 삭제하십시오.

Redis의 소스 코드를 읽는 방법 Redis의 소스 코드를 읽는 방법 Apr 10, 2025 pm 08:27 PM

Redis 소스 코드를 이해하는 가장 좋은 방법은 단계별로 이동하는 것입니다. Redis의 기본 사항에 익숙해집니다. 특정 모듈을 선택하거나 시작점으로 기능합니다. 모듈 또는 함수의 진입 점으로 시작하여 코드를 한 줄씩 봅니다. 함수 호출 체인을 통해 코드를 봅니다. Redis가 사용하는 기본 데이터 구조에 익숙해 지십시오. Redis가 사용하는 알고리즘을 식별하십시오.

Redis의 메시지 미들웨어를 만드는 방법 Redis의 메시지 미들웨어를 만드는 방법 Apr 10, 2025 pm 07:51 PM

메시지 미들웨어로서 Redis는 생산 소비 모델을 지원하고 메시지를 지속하고 안정적인 전달을 보장 할 수 있습니다. Middleware 메시지로 Redis를 사용하면 낮은 대기 시간, 신뢰할 수 있으며 확장 가능한 메시징이 가능합니다.

Redis로 서버를 시작하는 방법 Redis로 서버를 시작하는 방법 Apr 10, 2025 pm 08:12 PM

Redis 서버를 시작하는 단계에는 다음이 포함됩니다. 운영 체제에 따라 Redis 설치. Redis-Server (Linux/MacOS) 또는 Redis-Server.exe (Windows)를 통해 Redis 서비스를 시작하십시오. Redis-Cli Ping (Linux/MacOS) 또는 Redis-Cli.exe Ping (Windows) 명령을 사용하여 서비스 상태를 확인하십시오. Redis-Cli, Python 또는 Node.js와 같은 Redis 클라이언트를 사용하여 서버에 액세스하십시오.

See all articles