화산 엔진과 대형 모델을 사용하여 데이터 플라이휠을 '점화'합니다.

데이터 소비 요구 사항이 있는 분석가 및 운영자의 경우 SQL을 이해하지 못하더라도 기본적인 ETL을 수행할 수 있습니다.
필드가 생성된 후 后 이를 확인한 후 운영자는 분석 및 탐색을 시각화할 수 있습니다. 과거 BI 도구는 일반적으로 드래그 앤 드롭 방식을 채택해 대시보드 제작의 문턱이 낮아졌지만, 분석 및 인사이트 분야에서는 여전히 데이터를 더 잘 이해하기 위해 많은 양의 전문 지식이 필요합니다. 이것이 "임계값"입니다. ㅋㅋㅋ 시각적 탐색
조정된 IM 메시지 확장 분석 구독
분석 보조원의 임계값 분석은 "데이터 다이어그램"을 읽는 것부터 자연어 대화를 통해 결과를 직접 이해하는 것까지 분석의 임계값을 더욱 줄여줍니다. 과거 분석의 문제를 해결하기 위해 대폭 단축되었습니다. 많은 전문 지식이 필요한 Pain Point에 대한 통찰력을 얻고 데이터 분석 주기를 단축합니다.
이 단계에서 DataWind - Analysis Assistant의 응용 프로그램 시나리오는 이미 매우 풍부합니다. 분석 도우미는 핵심 분석 시나리오에서 대화형 탐색을 활성화하는 것 외에도 이전에 더 많은 것이 필요했던 표현 생성 및 기타 작업까지 기능을 확장합니다. 현장의 기술적 한계.
ByteDance에는 심오한 데이터 기반 유전자를 가지고 있습니다. ByteDance 내의 거의 모든 시나리오는 A/B 테스트를 거쳤으며 데이터 피드백을 통해 조정이 이루어지며 Douyin 비디오 품질의 최적화 효과가 좋은지, 추천 알고리즘 전략 최적화가 좋은지 등 비즈니스 전략을 추진합니다. 정확하며 Toutiao의 이름도 A/B 테스트를 거쳤습니다.
바이트 내에서는 데이터 소비 범위가 매우 넓습니다. 조직적으로는 일선 직원뿐만 아니라 최고 경영진부터 중간 관리자까지 모든 사람이 기본적으로 데이터를 보고 이를 활용하여 회사의 운영 상태, 매출 및 지출, 사업 진행 상황, 제품 전략을 평가할 수 있습니다. 라이브 전자상거래의 실시간 마케팅과 같은 특정 시나리오에서는 실시간 데이터를 기반으로 운영을 설계하고 해당 마케팅 전략을 추진합니다.
바이트는 데이터 소비를 통해 과학적인 의사 결정과 민첩한 행동을 달성했으며, 이는 빈번한 데이터 소비와 비즈니스 이점을 통해 비즈니스 가치를 향상시켰으며, 더 나은 품질의 데이터 자산을 저렴한 비용으로 구축하는 것을 목표로 삼았습니다. 비즈니스 애플리케이션을 지원합니다.
올해 4월, Volcano Engine은 ByteDance의 10년 이상의 데이터 중심 실무 경험을 바탕으로 "Data Flywheel"을 사용하여 엔터프라이즈 디지털 인텔리전스 업그레이드의 새로운 패러다임인 "Data Flywheel"을 출시했습니다. 엔터프라이즈 데이터 흐름 요약 비즈니스 흐름에 통합된 후 데이터 자산 및 비즈니스 애플리케이션을 개선하는 플라이휠 효과를 얻을 수 있습니다.
전반적인 디지털화 추세에 따라 수천 가지 산업 분야의 기업 비즈니스가 디지털화에 가까워지고 있으며 데이터는 기업에 점점 더 중요해지고 있습니다. 새로운 생산 요소로서 데이터는 기업의 디지털 및 지능적 혁신을 지원하고 있습니다. 그러나 객관적으로 보면 많은 기업들이 디지털 구축을 많이 했음에도 불구하고 데이터의 가치를 온전히 발휘하지 못하고 있습니다.
"기업은 데이터 제품을 높은 가격에 배포할 수 있지만 실제로 내부적으로 사용하는 사람은 거의 없을 수 있습니다. 데이터 흐름이 어렵다면 그 가치를 실현하기 어려울 것입니다." 데이터 상품 시장에서 관찰된 바에 따르면,
전체 디지털화 과정의 관점에서 볼 때 "데이터 중심"이라는 것은 어렵지만 올바른 것입니다. Luo Xuan은 Byte를 예로 들어 현재 ByteDance 직원의 80%가 데이터 제품을 직접 사용할 수 있으며 관리 가능하고 운영 가능한 데이터 자산이 일일 분석 시나리오의 80%를 다루고 있다고 밝혔습니다. Byte의 경험에 따르면 이는 기업 내에서 좋은 "데이터 플라이휠"을 형성하기 위해 기업 내 내부 데이터 제품의 활용률과 시나리오에서 관리 가능하고 운영 가능한 데이터 자산의 적용 범위를 더 높은 수준으로 높여야 함을 의미합니다. 회사. .
"문턱을 낮추고 데이터를 활용해야만 데이터가 유통되면서 어떤 가치를 창출할지 알 수 있습니다." 이제 막 디지털화 과정에 돌입한 기업에게 데이터의 가치는 실제와는 거리가 멀습니다. 보물이 발굴되면 임계값이 낮은 데이터 제품이 보물을 잠금 해제하는 열쇠가 될 수 있습니다.
위 내용은 화산 엔진과 대형 모델을 사용하여 데이터 플라이휠을 '점화'합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 인공 지능 개발 과정에서 LLM(대형 언어 모델)의 제어 및 안내는 항상 핵심 과제 중 하나였으며 이러한 모델이 두 가지 모두를 보장하는 것을 목표로 했습니다. 강력하고 안전하게 인간 사회에 봉사합니다. 인간 피드백(RL)을 통한 강화 학습 방법에 초점을 맞춘 초기 노력

1년 이상의 개발 끝에 AIGC는 점차 텍스트 대화와 그림 생성에서 비디오 생성으로 옮겨갔습니다. 4개월 전을 돌이켜보면, 소라의 탄생은 비디오 생성 트랙의 개편을 가져왔고 비디오 제작 분야에서 AIGC의 적용 범위와 깊이를 적극적으로 홍보했습니다. 모두가 대형 모델을 이야기하는 시대에 우리는 한편으로는 영상 생성이 가져오는 시각적 충격에 놀라기도 하고, 다른 한편으로는 구현의 어려움에 직면하기도 합니다. 대형 모델은 여전히 기술 연구 개발부터 적용 실무까지의 도약기에 있고 여전히 실제 비즈니스 시나리오를 기반으로 조정해야 하는 것이 사실이지만 이상과 현실 사이의 거리가 점차 좁아지고 있습니다. 인공지능 기술의 중요한 구현 시나리오로서 마케팅은 많은 기업과 실무자들이 획기적인 발전을 이루고자 하는 방향이 되었습니다. 적절한 방법을 익히면 동영상 마케팅의 창의적인 과정은 다음과 같습니다.

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.
