목차
필요한 라이브러리 가져오기
데이터 준비
중심점 초기화
거리 계산
가장 가까운 중심에 데이터 포인트 할당
중심 위치 업데이트
반복적인 클러스터링 프로세스
클러스터링 알고리즘 실행
결과 시각화
백엔드 개발 파이썬 튜토리얼 Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법은 무엇입니까?

Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법은 무엇입니까?

Sep 21, 2023 am 11:06 AM
python 클러스터링 알고리즘 k-평균

Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법은 무엇입니까?

Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법은 무엇입니까?

K-평균 클러스터링 알고리즘은 속성에 따라 데이터 집합을 분류하고 클러스터링할 수 있는 일반적으로 사용되는 데이터 마이닝 및 기계 학습 알고리즘입니다. 이 기사에서는 Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법을 소개하고 구체적인 코드 예제를 제공합니다.

코드 작성을 시작하기 전에 K-평균 클러스터링 알고리즘의 기본 원리를 이해해야 합니다.

K-평균 클러스터링 알고리즘의 기본 단계는 다음과 같습니다.

  1. k개 중심을 초기화합니다. 중심은 클러스터의 중심점을 나타내며 각 데이터 포인트는 가장 가까운 중심으로 표시되는 범주에 할당됩니다.
  2. 중심으로부터의 거리를 기준으로 가장 가까운 중심으로 표시되는 범주에 각 데이터 포인트를 할당합니다.
  3. 중심 위치를 업데이트하여 해당 카테고리에 있는 모든 데이터 포인트의 평균으로 설정합니다.
  4. 질량 중심 위치가 더 이상 변하지 않을 때까지 2단계와 3단계를 반복합니다.

이제 코드 작성을 시작할 수 있습니다.

필요한 라이브러리 가져오기

먼저 numpy, matplotlib 등 필요한 라이브러리를 가져와야 합니다.

import numpy as np
import matplotlib.pyplot as plt
로그인 후 복사

데이터 준비

클러스터링을 위한 데이터 세트를 준비해야 합니다. 여기서는 numpy를 사용하여 2차원 데이터 세트를 무작위로 생성합니다.

data = np.random.randn(100, 2)
로그인 후 복사

중심점 초기화

클러스터링 알고리즘을 위해서는 k개 중심을 초기화해야 합니다. 여기서는 numpy를 사용하여 k개의 데이터 포인트를 초기 중심으로 무작위로 선택합니다.

k = 3
centroids = data[np.random.choice(range(len(data)), k, replace=False)]
로그인 후 복사

거리 계산

데이터 지점과 질량 중심 사이의 거리를 계산하는 함수를 정의해야 합니다. 여기서는 유클리드 거리를 사용합니다.

def compute_distances(data, centroids):
    return np.linalg.norm(data[:, np.newaxis] - centroids, axis=2)
로그인 후 복사

가장 가까운 중심에 데이터 포인트 할당

가장 가까운 중심이 나타내는 범주에 각 데이터 포인트를 할당하는 함수를 정의해야 합니다.

def assign_clusters(data, centroids):
    distances = compute_distances(data, centroids)
    return np.argmin(distances, axis=1)
로그인 후 복사

중심 위치 업데이트

중심 위치를 업데이트하는 함수를 정의해야 합니다. 즉, 해당 카테고리에 있는 모든 데이터 포인트의 평균으로 설정해야 합니다.

def update_centroids(data, clusters, k):
    centroids = []
    for i in range(k):
        centroids.append(np.mean(data[clusters == i], axis=0))
    return np.array(centroids)
로그인 후 복사

반복적인 클러스터링 프로세스

마지막으로 중심 위치가 더 이상 변하지 않을 때까지 클러스터링 프로세스를 반복해야 합니다.

def kmeans(data, k, max_iter=100):
    centroids = data[np.random.choice(range(len(data)), k, replace=False)]
    for _ in range(max_iter):
        clusters = assign_clusters(data, centroids)
        new_centroids = update_centroids(data, clusters, k)
        if np.all(centroids == new_centroids):
            break
        centroids = new_centroids
    return clusters, centroids
로그인 후 복사

클러스터링 알고리즘 실행

이제 클러스터링 알고리즘을 실행하여 각 데이터 포인트가 속하는 범주와 최종 중심을 얻을 수 있습니다.

clusters, centroids = kmeans(data, k)
로그인 후 복사

결과 시각화

마지막으로 matplotlib를 사용하여 결과를 시각화할 수 있습니다. 각 데이터 포인트는 해당 카테고리에 따라 색상으로 구분되며, 중심 위치는 빨간색 원으로 표시됩니다.

plt.scatter(data[:, 0], data[:, 1], c=clusters)
plt.scatter(centroids[:, 0], centroids[:, 1], s=100, c='red', marker='o')
plt.show()
로그인 후 복사

위의 코드 예제를 통해 Python에서 K-평균 클러스터링 알고리즘을 구현할 수 있습니다. 필요에 따라 클러스터 수 k 및 기타 매개변수를 조정할 수 있습니다. 이 글이 K-평균 클러스터링 알고리즘을 이해하고 구현하는 데 도움이 되기를 바랍니다!

위 내용은 Python에서 K-평균 클러스터링 알고리즘을 작성하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 채팅 명령 및 사용 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP 및 Python : 코드 예제 및 비교 PHP 및 Python : 코드 예제 및 비교 Apr 15, 2025 am 12:07 AM

PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Centos에서 Pytorch 모델을 훈련시키는 방법 Centos에서 Pytorch 모델을 훈련시키는 방법 Apr 14, 2025 pm 03:03 PM

CentOS 시스템에서 Pytorch 모델을 효율적으로 교육하려면 단계가 필요 하며이 기사는 자세한 가이드를 제공합니다. 1. 환경 준비 : 파이썬 및 종속성 설치 : CentOS 시스템은 일반적으로 파이썬을 사전 설치하지만 버전은 더 오래 될 수 있습니다. YUM 또는 DNF를 사용하여 Python 3 및 Upgrade Pip : Sudoyumupdatepython3 (또는 SudodnfupdatePython3), PIP3INSTALL-UPGRADEPIP를 설치하는 것이 좋습니다. CUDA 및 CUDNN (GPU 가속도) : NVIDIAGPU를 사용하는 경우 Cudatool을 설치해야합니다.

Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Python vs. JavaScript : 커뮤니티, 라이브러리 및 리소스 Apr 15, 2025 am 12:16 AM

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

Centos에서 Pytorch에 대한 GPU 지원은 어떻습니까? Centos에서 Pytorch에 대한 GPU 지원은 어떻습니까? Apr 14, 2025 pm 06:48 PM

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker 원리에 대한 자세한 설명 Docker 원리에 대한 자세한 설명 Apr 14, 2025 pm 11:57 PM

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Centos에서 Pytorch 버전을 선택하는 방법 Centos에서 Pytorch 버전을 선택하는 방법 Apr 14, 2025 pm 02:51 PM

Centos에서 Pytorch 버전을 선택할 때 다음과 같은 주요 요소를 고려해야합니다. 1. Cuda 버전 호환성 GPU 지원 : NVIDIA GPU가 있고 GPU 가속도를 사용하려면 해당 CUDA 버전을 지원하는 Pytorch를 선택해야합니다. NVIDIA-SMI 명령을 실행하여 지원되는 CUDA 버전을 볼 수 있습니다. CPU 버전 : GPU가 없거나 GPU를 사용하지 않으려면 Pytorch의 CPU 버전을 선택할 수 있습니다. 2. 파이썬 버전 Pytorch

미니 오펜 센토 호환성 미니 오펜 센토 호환성 Apr 14, 2025 pm 05:45 PM

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

Centos에 nginx를 설치하는 방법 Centos에 nginx를 설치하는 방법 Apr 14, 2025 pm 08:06 PM

Centos Nginx를 설치하려면 다음 단계를 수행해야합니다. 개발 도구, PCRE-DEVEL 및 OPENSSL-DEVEL과 같은 종속성 설치. nginx 소스 코드 패키지를 다운로드하고 압축을 풀고 컴파일하고 설치하고 설치 경로를/usr/local/nginx로 지정하십시오. nginx 사용자 및 사용자 그룹을 만들고 권한을 설정하십시오. 구성 파일 nginx.conf를 수정하고 청취 포트 및 도메인 이름/IP 주소를 구성하십시오. Nginx 서비스를 시작하십시오. 종속성 문제, 포트 충돌 및 구성 파일 오류와 같은 일반적인 오류는주의를 기울여야합니다. 캐시를 켜고 작업자 프로세스 수 조정과 같은 특정 상황에 따라 성능 최적화를 조정해야합니다.

See all articles