> 백엔드 개발 > 파이썬 튜토리얼 > NLP용 Python을 사용하여 PDF 파일의 표 형식 데이터를 처리하는 방법은 무엇입니까?

NLP용 Python을 사용하여 PDF 파일의 표 형식 데이터를 처리하는 방법은 무엇입니까?

PHPz
풀어 주다: 2023-09-27 15:04:47
원래의
965명이 탐색했습니다.

如何利用Python for NLP处理PDF文件中的表格数据?

NLP용 Python을 사용하여 PDF 파일의 표 형식 데이터를 처리하는 방법은 무엇입니까?

요약: 자연어 처리(NLP)는 컴퓨터 과학 및 인공 지능과 관련된 중요한 분야이며 PDF 파일의 표 형식 데이터를 처리하는 것은 NLP의 일반적인 작업입니다. 이 기사에서는 Python 및 일반적으로 사용되는 일부 라이브러리를 사용하여 표 형식 데이터 추출, 데이터 전처리 및 변환을 포함하여 PDF 파일의 표 형식 데이터를 처리하는 방법을 소개합니다.

키워드: Python, NLP, PDF, 테이블 형식 데이터

1. 소개

기술의 발전으로 PDF 파일은 일반적인 문서 형식이 되었습니다. 이러한 PDF 파일에는 테이블 형식의 데이터가 금융, 의료, 데이터 분석 등 다양한 분야에서 널리 사용됩니다. 따라서 PDF 파일에서 이러한 표 형식의 데이터를 추출하고 처리하는 방법이 대중적인 문제가 되었습니다.

Python은 다양한 문제를 해결하기 위한 풍부한 라이브러리와 도구를 제공하는 강력한 프로그래밍 언어입니다. NLP 분야에서 Python에는 PDFMiner, Tabula, Pandas 등과 같은 우수한 라이브러리가 많이 있습니다. 이러한 라이브러리는 PDF 파일의 표 형식 데이터를 처리하는 데 도움이 될 수 있습니다.

2. 라이브러리 설치

Python을 사용하여 PDF 파일의 표 형식 데이터를 처리하기 전에 몇 가지 필요한 라이브러리를 설치해야 합니다. pip 패키지 관리자를 사용하여 이러한 라이브러리를 설치할 수 있습니다. 터미널이나 명령줄 창을 열고 다음 명령을 입력합니다:

pip install pdfminer.six
pip install tabula-py
pip install pandas
로그인 후 복사

3. 테이블 데이터 추출

먼저 PDF 파일에서 테이블 데이터를 추출해야 합니다. PDFMiner 라이브러리를 사용하여 이 기능을 구현할 수 있습니다. 다음은 PDFMiner 라이브러리를 사용하여 표 형식 데이터를 추출하기 위한 샘플 코드입니다.

import pdfminer
import io
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.layout import LAParams
from pdfminer.pdfpage import PDFPage

def extract_text_from_pdf(pdf_path):
    resource_manager = PDFResourceManager()
    output_string = io.StringIO()
    laparams = LAParams()
    with TextConverter(resource_manager, output_string, laparams=laparams) as converter:
        with open(pdf_path, 'rb') as file:
            interpreter = PDFPageInterpreter(resource_manager, converter)
            for page in PDFPage.get_pages(file):
                interpreter.process_page(page)
    
    text = output_string.getvalue()
    output_string.close()
    return text

pdf_path = "example.pdf"
pdf_text = extract_text_from_pdf(pdf_path)
print(pdf_text)
로그인 후 복사

이 예에서는 먼저 PDFResourceManager 개체, TextConverter 개체 및 기타 필요한 개체를 만듭니다. . 그런 다음 PDF 파일을 열고 PDFPageInterpreter를 사용하여 파일을 페이지별로 해석합니다. 마지막으로 추출된 텍스트 데이터를 변수에 저장하고 반환합니다. PDFResourceManager对象、一个TextConverter对象以及一些其他必要的对象。然后,我们打开PDF文件并使用PDFPageInterpreter逐页解释文件。最后,我们将提取的文本数据存储在一个变量中并返回。

四、数据预处理

在提取表格数据后,我们需要进行一些数据预处理,以便更好地处理这些数据。常见的预处理任务包括去除空格、清洗数据、处理缺失值等。这里我们使用Pandas库来进行数据预处理。

下面是一个使用Pandas库进行数据预处理的示例代码:

import pandas as pd

def preprocess_data(data):
    df = pd.DataFrame(data)
    df = df.applymap(lambda x: x.strip())
    df = df.dropna()
    df = df.reset_index(drop=True)
    
    return df

data = [
    ["Name", "Age", "Gender"],
    ["John", "25", "Male"],
    ["Lisa", "30", "Female"],
    ["Mike", "28", "Male"],
]

df = preprocess_data(data)
print(df)
로그인 후 복사

在这个示例中,我们首先将提取的数据存储在一个二维列表中。然后,我们创建一个Pandas的DataFrame对象,并对其进行一系列预处理操作,包括去除空格、清洗数据、处理缺失值。最后,我们将预处理后的数据打印出来。

五、数据转换

在进行了数据预处理之后,我们可以将表格数据转换为其他常见的数据结构,如JSON、CSV或Excel。下面是一个使用Pandas库将数据转换为CSV文件的示例代码:

def convert_data_to_csv(df, csv_path):
    df.to_csv(csv_path, index=False)

csv_path = "output.csv"
convert_data_to_csv(df, csv_path)
로그인 후 복사

在这个示例中,我们使用Pandas的to_csv()

4. 데이터 전처리

테이블 데이터를 추출한 후 데이터를 더 잘 처리하기 위해 일부 데이터 전처리를 수행해야 합니다. 일반적인 전처리 작업에는 공백 제거, 데이터 정리, 누락된 값 처리 등이 포함됩니다. 여기서는 데이터 전처리를 위해 Pandas 라이브러리를 사용합니다.

Pandas 라이브러리를 사용한 데이터 전처리를 위한 샘플 코드는 다음과 같습니다.

rrreee

이 예에서는 먼저 추출된 데이터를 2차원 목록에 저장합니다. 그런 다음 Pandas DataFrame 객체를 생성하고 공백 제거, 데이터 정리, 누락된 값 처리 등 일련의 전처리 작업을 수행합니다. 마지막으로 전처리된 데이터를 인쇄합니다.

5. 데이터 변환
  1. 데이터 전처리 후에 표 형식 데이터를 JSON, CSV 또는 Excel과 같은 다른 일반적인 데이터 구조로 변환할 수 있습니다. 다음은 Pandas 라이브러리를 사용하여 데이터를 CSV 파일로 변환하는 예제 코드입니다.
  2. rrreee
  3. 이 예제에서는 Pandas의 to_csv() 함수를 사용하여 데이터를 CSV 파일로 변환하고 다음 위치에 저장합니다. 지정된 경로.
  4. 6. 요약
  5. 이 글의 소개를 통해 우리는 Python과 일반적으로 사용되는 일부 라이브러리를 사용하여 PDF 파일의 표 형식 데이터를 처리하는 방법을 배웠습니다. 먼저 PDFMiner 라이브러리를 사용하여 PDF 파일의 텍스트 데이터를 추출한 다음 Pandas 라이브러리를 사용하여 추출된 데이터를 전처리하고 변환합니다.
물론 PDF 파일의 표 형식 데이터는 구조와 형식이 다를 수 있으므로 특정 상황에 따라 적절하게 조정하고 처리해야 합니다. 이 기사가 PDF 파일의 표 형식 데이터를 처리하는 데 도움과 지침을 제공했기를 바랍니다. 🎜🎜참고자료: 🎜🎜🎜https://realpython.com/pdf-python/🎜🎜https://pandas.pydata.org/🎜🎜https://pdfminer-docs.readthedocs.io/🎜🎜https: / /tabula-py.readthedocs.io/🎜🎜

위 내용은 NLP용 Python을 사용하여 PDF 파일의 표 형식 데이터를 처리하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

관련 라벨:
원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿