공개된 팁: Python으로 아름다운 3D 차트 그리기
팁 공개: Python을 사용하여 아름다운 3D 차트 그리기
소개:
데이터 시각화 분야에서 아름다운 3D 차트를 만들면 데이터의 특성과 추세를 보다 직관적으로 표시할 수 있습니다. 강력한 프로그래밍 언어인 Python에는 이 목표를 달성하는 데 도움이 되는 많은 라이브러리와 도구가 있습니다. 이 기사에서는 독자가 Python으로 아름다운 3D 차트를 그리는 데 필요한 몇 가지 팁과 구체적인 코드 예제를 공유하여 독자가 차트를 더 잘 이해하고 적용할 수 있도록 돕습니다.
1. 준비:
시작하기 전에 matplotlib, numpy 및 mpl_toolkits.mplot3d를 포함하여 몇 가지 필수 Python 라이브러리를 설치해야 합니다. 다음 코드를 통해 설치할 수 있습니다.
pip install matplotlib pip install numpy pip install mpl_toolkits.mplot3d
2. 간단한 3D 산점도 그리기:
먼저 간단한 3D 산점도를 그려보겠습니다. 코드는 다음과 같습니다.
import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.random.standard_normal(100) y = np.random.standard_normal(100) z = np.random.standard_normal(100) ax.scatter(x, y, z) plt.show()
이 예에서는 먼저 Figure
개체와 Axes3D
개체를 만들고 Axes3D
개체를 추가합니다. 그림
에 추가되었습니다. 그런 다음 x, y, z 좌표로 표준 정규 분포를 따르는 100개의 난수를 생성하고 scatter
방법을 사용하여 3D 좌표계에 산점도를 그립니다. Figure
对象和一个Axes3D
对象,并通过add_subplot
方法将Axes3D
对象添加到Figure
中。然后,我们生成100个服从标准正态分布的随机数作为x、y、z坐标,并使用scatter
方法在3D坐标系上绘制散点图。
三、绘制3D曲面图:
接下来,我们尝试绘制一个3D曲面图。代码如下:
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) ax.plot_surface(X, Y, Z, cmap='viridis') plt.show()
在这个示例中,我们首先生成了x和y坐标的一维数组,并利用meshgrid
方法生成了一个网格,然后根据公式计算了z坐标的值。最后,使用plot_surface
方法绘制了3D曲面图。
四、绘制3D柱状图:
除了散点图和曲面图,我们还可以绘制3D柱状图来展示数据的分布情况。代码如下:
import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = np.arange(10) y = np.arange(10) X, Y = np.meshgrid(x, y) Z = np.random.randint(1, 10, (10, 10)) ax.bar3d(X.flatten(), Y.flatten(), np.zeros_like(Z).flatten(), 1, 1, Z.flatten()) plt.show()
在这个示例中,我们首先生成了x和y坐标的一维数组,并利用meshgrid
方法生成了一个网格,然后利用random.randint
方法生成了一个10x10的随机整数数组作为z坐标的值。最后,使用bar3d
다음으로 3D 표면 그래프를 그려보겠습니다. 코드는 다음과 같습니다.
rrreee
meshgrid
메서드를 사용하여 그리드를 생성한 후 의 값을 계산했습니다. 공식에 따른 z 좌표 . 마지막으로 plot_surface
메서드를 사용하여 3D 표면 플롯을 그렸습니다. 🎜🎜4. 3D 히스토그램 그리기: 🎜산점도와 표면도 외에도 3D 히스토그램을 그려 데이터 분포를 표시할 수도 있습니다. 코드는 다음과 같습니다. 🎜rrreee🎜이 예제에서는 먼저 x, y 좌표의 1차원 배열을 생성하고 meshgrid
메서드를 사용하여 그리드를 생성한 다음 를 사용합니다. random.randint 메소드는 z 좌표의 값으로 임의의 정수로 구성된 10x10 배열을 생성합니다. 마지막으로 <code>bar3d
메서드를 사용하여 3D 히스토그램을 그립니다. 🎜🎜결론: 🎜이 기사 공유를 통해 우리는 산점도, 표면도 및 히스토그램 그리기를 포함하여 Python으로 아름다운 3D 차트를 그리는 데 필요한 몇 가지 기술과 구체적인 코드 예제를 배웠습니다. 이러한 기술은 데이터의 특성과 추세를 더 잘 표시하고 데이터 시각화 효과를 향상시키는 데 도움이 될 수 있습니다. 독자들이 학습과 실습을 통해 이러한 기술을 더욱 익히고 실제 프로젝트에서 유연하게 사용할 수 있기를 바랍니다. 🎜위 내용은 공개된 팁: Python으로 아름다운 3D 차트 그리기의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

CentOS 시스템에서 Pytorch GPU 가속도를 활성화하려면 Cuda, Cudnn 및 GPU 버전의 Pytorch를 설치해야합니다. 다음 단계는 프로세스를 안내합니다. CUDA 및 CUDNN 설치 CUDA 버전 호환성 결정 : NVIDIA-SMI 명령을 사용하여 NVIDIA 그래픽 카드에서 지원하는 CUDA 버전을보십시오. 예를 들어, MX450 그래픽 카드는 CUDA11.1 이상을 지원할 수 있습니다. Cudatoolkit 다운로드 및 설치 : NVIDIACUDATOOLKIT의 공식 웹 사이트를 방문하여 그래픽 카드에서 지원하는 가장 높은 CUDA 버전에 따라 해당 버전을 다운로드하여 설치하십시오. CUDNN 라이브러리 설치 :

Docker는 Linux 커널 기능을 사용하여 효율적이고 고립 된 응용 프로그램 실행 환경을 제공합니다. 작동 원리는 다음과 같습니다. 1. 거울은 읽기 전용 템플릿으로 사용되며, 여기에는 응용 프로그램을 실행하는 데 필요한 모든 것을 포함합니다. 2. Union 파일 시스템 (Unionfs)은 여러 파일 시스템을 스택하고 차이점 만 저장하고 공간을 절약하고 속도를 높입니다. 3. 데몬은 거울과 컨테이너를 관리하고 클라이언트는 상호 작용을 위해 사용합니다. 4. 네임 스페이스 및 CGroup은 컨테이너 격리 및 자원 제한을 구현합니다. 5. 다중 네트워크 모드는 컨테이너 상호 연결을 지원합니다. 이러한 핵심 개념을 이해 함으로써만 Docker를 더 잘 활용할 수 있습니다.

Minio Object Storage : Centos System Minio 하의 고성능 배포는 Go Language를 기반으로 개발 한 고성능 분산 객체 저장 시스템입니다. Amazons3과 호환됩니다. Java, Python, JavaScript 및 Go를 포함한 다양한 클라이언트 언어를 지원합니다. 이 기사는 CentOS 시스템에 대한 Minio의 설치 및 호환성을 간단히 소개합니다. CentOS 버전 호환성 Minio는 다음을 포함하되 이에 국한되지 않는 여러 CentOS 버전에서 확인되었습니다. CentOS7.9 : 클러스터 구성, 환경 준비, 구성 파일 설정, 디스크 파티셔닝 및 미니를 다루는 완전한 설치 안내서를 제공합니다.

CentOS 시스템에 대한 Pytorch 분산 교육에는 다음 단계가 필요합니다. Pytorch 설치 : 전제는 Python과 PIP가 CentOS 시스템에 설치된다는 것입니다. CUDA 버전에 따라 Pytorch 공식 웹 사이트에서 적절한 설치 명령을 받으십시오. CPU 전용 교육의 경우 다음 명령을 사용할 수 있습니다. PipinStalltorchtorchvisiontorchaudio GPU 지원이 필요한 경우 CUDA 및 CUDNN의 해당 버전이 설치되어 있는지 확인하고 해당 PyTorch 버전을 설치하려면 설치하십시오. 분산 환경 구성 : 분산 교육에는 일반적으로 여러 기계 또는 단일 기계 다중 GPU가 필요합니다. 장소

CentOS 시스템에 Pytorch를 설치할 때는 적절한 버전을 신중하게 선택하고 다음 주요 요소를 고려해야합니다. 1. 시스템 환경 호환성 : 운영 체제 : CentOS7 이상을 사용하는 것이 좋습니다. Cuda 및 Cudnn : Pytorch 버전 및 Cuda 버전은 밀접하게 관련되어 있습니다. 예를 들어, pytorch1.9.0은 cuda11.1을 필요로하고 Pytorch2.0.1은 cuda11.3을 필요로합니다. CUDNN 버전도 CUDA 버전과 일치해야합니다. Pytorch 버전을 선택하기 전에 호환 CUDA 및 CUDNN 버전이 설치되었는지 확인하십시오. 파이썬 버전 : Pytorch 공식 지점

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
