기술 주변기기 일체 포함 딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

Oct 05, 2023 pm 04:21 PM
산업 rt-x open x-embodiment

로봇공학이 자연어 처리(NLP), 비전 및 기타 인공 지능 분야에 비해 훨씬 뒤처지는 이유는 무엇입니까? 무엇보다도 데이터 부족이 가장 큰 이유입니다. 이 문제를 해결하기 위해 Google DeepMind 및 기타 기관에서는 개방형 X-Embodiment 데이터 세트를 출시하고 보다 강력한 RT-X 모델 학습에 성공했습니다

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
대형 모델의 지속적인 혁신 2023년에는 연구 대형 모델을 두뇌로 활용해 작업을 보조하는 지능형 로봇 구현도 빠르게 발전하고 있다.

2달 전 Google DeepMind는 로봇을 제어하기 위한 최초의 VLA(Vision-Language-Action) 모델인 RT-2를 출시했습니다. 이 모델을 통해 로봇은 복잡한 인간 지시를 해석할 수 있을 뿐만 아니라 앞에 있는 물체를 이해하고(물체가 이전에 본 적이 없더라도) 지시에 따라 조치를 취할 수 있습니다. 예를 들어, 로봇에게 테이블 위의 "멸종 동물"을 집어 올리라고 요청합니다. 앞에 있는 공룡 인형을 잡아요.

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

당시 Google 경영진은 RT-2가 로봇 제작 및 프로그래밍 방식에 있어서 큰 도약이라고 말했습니다. "이번 변화로 인해 우리는 전체 연구 계획을 다시 생각해야 했습니다."

더 놀라운 것은 두 달이 조금 넘었는데 딥마인드의 로봇 모델이 다시 개선되어 순식간에 3배로 늘어났다는 것입니다.

이것은 어떻게 달성됩니까?

우리는 로봇이 일반적으로 한 가지 일을 하는 데 매우 전문적이지만 일반적인 능력이 좋지 않다는 것을 알고 있습니다. 일반적으로 각 작업, 로봇, 환경에 대해 모델을 훈련해야 합니다. 변수를 변경하려면 처음부터 다시 시작해야 하는 경우가 많습니다. 하지만 다양한 로봇공학 분야의 지식을 결합하여 범용 로봇을 훈련하는 방법을 만들 수 있다면 어떨까요?

이것이 DeepMind가 오랫동안 해왔던 일입니다. 그들은 22개의 서로 다른 로봇 유형의 데이터를 모아 Open X-Embodiment 데이터 세트를 만든 다음 더 유능한 RT-X(각각 RT-1-X 및 RT-2-X)를 교육했습니다.

RT-1-X 모델을 5개의 서로 다른 연구실에서 테스트한 결과, 각 로봇에 대해 독립적으로 개발된 방법과 비교하여 일반적으로 사용되는 5개의 서로 다른 로봇에서 새로운 방법의 성공률이 50% 증가한 것으로 나타났습니다. . 또한 위 데이터세트로 훈련된 RT-2-X가 실제 로봇 기술의 성능을 2배 향상시키고, 새로운 데이터를 학습함으로써 RT-2-X가 많은 새로운 기술을 습득한다는 것을 보여줍니다. 이 작업은 여러 로봇 유형의 데이터로 훈련된 단일 모델이 단일 로봇 유형의 데이터로 훈련된 모델보다 여러 로봇에서 훨씬 더 나은 성능을 발휘한다는 것을 보여줍니다.

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

이 연구는 DeepMind 단독으로 완료한 것이 아니라 33개 학술 연구소와의 협력의 결과라는 점을 언급할 가치가 있습니다. 그들은 개방적이고 책임감 있는 방식으로 이 기술을 개발하기 위해 최선을 다하고 있습니다.
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
현재 Open X-Embodiment 데이터 세트와 RT-1-X 모델 체크포인트는 광범위한 연구 커뮤니티에서 사용할 수 있습니다.
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
Nvidia의 선임 인공 지능 과학자인 Jim Fan은 오늘이 로봇을 위한 ImageNet의 순간이 될 수 있다고 말했습니다.

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

Google 연구원 Karol Hausman도 같은 한숨을 쉬었습니다. 드디어 로봇의 ImageNet 순간이 도래했습니다.

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

Open X-Embodiment 데이터 세트, 로봇 공학을 위한 ImageNet Moment

여기에서 훈련된 데이터 세트와 모델은 AI 발전을 발전시키는 데 핵심적인 역할을 했습니다. ImageNet이 컴퓨터 비전 연구를 발전시킨 것처럼 Open X-Embodiment도 로봇공학을 발전시켰습니다.

다양한 데이터 세트를 구축하는 것은 항상 범용 모델을 훈련하는 데 핵심이었습니다. 이러한 훈련된 모델은 다양한 유형의 로봇을 제어하고, 다양한 지침을 따르고, 복잡한 작업에 대한 기본 추론을 수행하고, 일반적인 작업 변경을 효율적으로 수행할 수 있습니다. 그러나 이러한 데이터 세트를 수집하는 것은 단일 실험실에서 너무 리소스 집약적입니다.

이를 위해 DeepMind는 33개 기관의 학술 연구소와 협력하여 Open X-Embodiment 데이터 세트를 구축했습니다. 그들은 1백만 개 이상의 클립에 걸쳐 22개의 로봇 인스턴스로부터 데이터를 수집하여 500개 이상의 기술과 150,000개 작업에서 로봇의 성능을 보여주었습니다. 이 데이터세트는 동종 로봇공학 데이터세트 중 가장 포괄적인 것입니다.
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
                                                                         공개 샘플
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
                                             
RT-1-X: 성공률이 50% 증가합니다.

RT-X는 두 개의 로봇변압기(RT) 모델을 기반으로 구성되었습니다.

특히 그림 3과 같이 Transformer 아키텍처를 기반으로 구축되고 로봇 제어용으로 설계된 35M 매개변수 네트워크인 RT-1을 사용하여 RT-1-X를 교육했습니다.

또한 인터넷 규모의 비전 및 언어 데이터와 훈련된 로봇 제어 데이터에 대해 대규모 시각적 언어 동작 모델(VLA) 제품군인 RT-2에서 RT-2-X를 훈련했습니다.

RT-1-X를 평가하기 위해 DeepMind는 이를 문 열기와 같은 특정 작업을 위해 개발된 모델과 비교했습니다. 결과는 Open X-Embodiment 데이터 세트를 사용하여 훈련된 RT-1-X가 원래 모델보다 평균 50% 더 나은 성능을 보인다는 것을 보여줍니다. RT-1-X의 평균 성공률은 원래 방법보다 50% 더 높습니다.
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
关于 다양한 협력 기관의 RT-1-X 효과 표시

RT-2-X: 무장애 잠금 해제의 새로운 기술
RT-X의 지식 이동을 연구하기 위해 기능을 갖춘 DeepMind는 다른 실험을 수행했습니다. 이러한 실험에는 RT-2 데이터 세트에는 없지만 다른 로봇의 데이터 세트에는 있는 개체와 기술이 포함되었습니다. 결과에 따르면 RT-2-X는 이전 최고 모델인 RT-2보다 새로운 기술을 3배 더 성공적으로 습득한 것으로 나타났습니다. 이는 또한 다른 플랫폼의 데이터를 사용한 공동 훈련이 RT-2-X에 원래 데이터 세트에 없는 추가 기술을 제공하여 새로운 작업을 수행할 수 있음을 보여줍니다. 위 그림은 RT-2-X가 물체 간의 공간적 관계를 이해하는 모습을 보여줍니다.
딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.
일련의 결과는 RT-2-X가 공간에 대한 더 나은 이해를 포함하여 이전에 RT-2로 달성할 수 없었던 기술을 달성한다는 것을 보여줍니다. 예를 들어, 목표 요구 사항을 달성하기 위해 로봇에게 "사과를 천 근처로 이동"하라고 요청하거나 로봇에게 "사과를 천으로 이동"하라고 요청하면 로봇은 완전히 다른 궤적을 취하게 됩니다. 로봇이 취하는 동작을 조정하려면 전치사를 "near"에서 "on"으로 변경하기만 하면 됩니다.
RT-2-X는 다른 로봇의 데이터를 RT-2-X 교육에 통합하면 로봇의 작업 범위를 향상시킬 수 있지만 충분히 고용량 아키텍처를 사용하는 경우에만 가능하다는 것을 보여줍니다. ㅋㅋ                                              RT-2-X(55B): 학술 실험실에서 알려지지 않은 작업을 수행하는 현재까지 가장 큰 모델 중 하나

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.


연구 영감: 로봇은 서로에게서 배워야 합니다. 연구원 마찬가지입니다

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.

로봇공학 연구는 흥미로운 초기 단계에 있습니다. DeepMind의 이 새로운 연구는 더 다양한 데이터와 더 나은 모델로 학습을 확장함으로써 더 유용한 보조 로봇을 개발하는 것이 가능할 수 있음을 보여줍니다. 전 세계 연구실과 자원을 협력하고 공유하는 것은 개방적이고 책임감 있는 방식으로 로봇공학 연구를 발전시키는 데 매우 중요합니다. DeepMind는 데이터 소스를 공개하고 안전하지만 제한된 모델을 제공함으로써 장벽을 줄이고 연구를 가속화하기를 희망합니다. 로봇 공학의 미래는 로봇이 서로 학습하고, 가장 중요하게는 연구자들이 서로 배울 수 있도록 하는 데 달려 있습니다.
이 작업은 모델이 다양한 환경에서 일반화될 수 있으며 Google DeepMind의 로봇이나 전 세계 여러 대학의 로봇에서 성능이 크게 향상되었음을 입증합니다. 향후 연구에서는 이러한 발전을 RoboCat의 자체 개선 속성과 결합하여 모델이 자체 경험을 기반으로 지속적으로 개선할 수 있는 방법을 탐구할 수 있습니다. 또 다른 향후 방향은 서로 다른 데이터 세트를 혼합하는 것이 교차 구현 에이전트 일반화에 어떻게 영향을 미치는지, 그리고 이러한 일반화가 어떻게 달성되는지 더 자세히 탐구하는 것입니다.

RT-X에 대해 더 알고 싶다면 DeepMind에서 발행한 이 논문을 참조하세요:

논문 링크: https://robotics-transformer-x.github.io / paper.pdf

프로젝트 링크: https://robotics-transformer-x.github.io/

딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.참고 링크: https://www.deepmind.com/blog/scaling - 다양한 로봇 유형에 걸친 상향 학습

위 내용은 딥 러닝의 거대 기업인 DeepMind는 ImageNet 데이터 세트에서 획기적인 진전을 이루며 로봇 공학 연구에 새로운 이정표를 세웠습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. 딥마인드 로봇이 탁구를 치는데 포핸드와 백핸드가 공중으로 미끄러져 인간 초보자를 완전히 제압했다. Aug 09, 2024 pm 04:01 PM

하지만 공원에 있는 노인을 이길 수는 없을까요? 파리올림픽이 본격화되면서 탁구가 많은 주목을 받고 있다. 동시에 로봇은 탁구 경기에서도 새로운 돌파구를 마련했습니다. 방금 DeepMind는 탁구 경기에서 인간 아마추어 선수 수준에 도달할 수 있는 최초의 학습 로봇 에이전트를 제안했습니다. 논문 주소: https://arxiv.org/pdf/2408.03906 DeepMind 로봇은 탁구를 얼마나 잘 치나요? 아마도 인간 아마추어 선수들과 동등할 것입니다: 포핸드와 백핸드 모두: 상대는 다양한 플레이 스타일을 사용하고 로봇도 견딜 수 있습니다: 다양한 스핀으로 서브를 받습니다. 그러나 게임의 강도는 그만큼 강렬하지 않은 것 같습니다. 공원에 있는 노인. 로봇용, 탁구용

최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. 최초의 기계식 발톱! Yuanluobao는 2024년 세계 로봇 회의에 등장하여 집에 들어갈 수 있는 최초의 체스 로봇을 출시했습니다. Aug 21, 2024 pm 07:33 PM

8월 21일, 2024년 세계로봇대회가 베이징에서 성대하게 개최되었습니다. SenseTime의 홈 로봇 브랜드 "Yuanluobot SenseRobot"은 전체 제품군을 공개했으며, 최근에는 Yuanluobot AI 체스 두는 로봇인 체스 프로페셔널 에디션(이하 "Yuanluobot SenseRobot")을 출시하여 세계 최초의 A 체스 로봇이 되었습니다. 집. Yuanluobo의 세 번째 체스 게임 로봇 제품인 새로운 Guoxiang 로봇은 AI 및 엔지니어링 기계 분야에서 수많은 특별한 기술 업그레이드와 혁신을 거쳤으며 처음으로 3차원 체스 말을 집는 능력을 실현했습니다. 가정용 로봇의 기계 발톱을 통해 체스 게임, 모두 체스 게임, 기보 복습 등과 같은 인간-기계 기능을 수행합니다.

클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 클로드도 게으르게 됐어요! 네티즌 : 휴가를 보내는 법을 배우십시오 Sep 02, 2024 pm 01:56 PM

개학이 코앞으로 다가왔습니다. 새 학기를 앞둔 학생들뿐만 아니라 대형 AI 모델도 스스로 관리해야 합니다. 얼마 전 레딧에는 클로드가 게으르다고 불평하는 네티즌들이 붐볐습니다. "레벨이 많이 떨어졌고, 자주 멈췄고, 심지어 출력도 매우 짧아졌습니다. 출시 첫 주에는 4페이지 전체 문서를 한 번에 번역할 수 있었지만 지금은 반 페이지도 출력하지 못합니다. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ "클로드에게 완전히 실망했습니다"라는 제목의 게시물에

세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. 세계로봇컨퍼런스에서 '미래 노인돌봄의 희망'을 담은 국산 로봇이 포위됐다. Aug 22, 2024 pm 10:35 PM

베이징에서 열린 세계로봇컨퍼런스에서는 휴머노이드 로봇의 전시가 현장의 절대 화두가 됐다. 스타더스트 인텔리전트 부스에서는 AI 로봇 어시스턴트 S1이 덜시머, 무술, 서예 3대 퍼포먼스를 선보였다. 문학과 무술을 모두 갖춘 하나의 전시 공간은 수많은 전문 관객과 미디어를 끌어 모았습니다. 탄력 있는 현의 우아한 연주를 통해 S1은 정밀한 작동과 속도, 힘, 정밀성을 갖춘 절대적인 제어력을 보여줍니다. CCTV 뉴스는 '서예'의 모방 학습 및 지능형 제어에 대한 특별 보도를 진행했습니다. 회사 설립자 Lai Jie는 부드러운 움직임 뒤에 하드웨어 측면이 최고의 힘 제어와 가장 인간과 유사한 신체 지표(속도, 하중)를 추구한다고 설명했습니다. 등)이지만 AI측에서는 사람의 실제 움직임 데이터를 수집해 로봇이 강한 상황에 직면했을 때 더욱 강해지고 빠르게 진화하는 방법을 학습할 수 있다. 그리고 민첩하다

ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award ACL 2024 시상식 발표: HuaTech의 Oracle 해독에 관한 최고의 논문 중 하나, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

참가자들은 이번 ACL 컨퍼런스에서 많은 것을 얻었습니다. ACL2024는 6일간 태국 방콕에서 개최됩니다. ACL은 전산언어학 및 자연어 처리 분야 최고의 국제학술대회로 국제전산언어학회(International Association for Computational Linguistics)가 주최하고 매년 개최된다. ACL은 NLP 분야에서 학술 영향력 1위를 항상 차지하고 있으며, CCF-A 추천 컨퍼런스이기도 합니다. 올해로 62회째를 맞이하는 ACL 컨퍼런스에는 NLP 분야의 최신 저서가 400편 이상 접수됐다. 어제 오후 컨퍼런스에서는 최우수 논문과 기타 상을 발표했습니다. 이번에 최우수논문상 7개(미출판 2개), 우수주제상 1개, 우수논문상 35개가 있다. 이 컨퍼런스에서는 또한 3개의 리소스 논문상(ResourceAward)과 사회적 영향상(Social Impact Award)을 수상했습니다.

홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 홍멍 스마트 트래블 S9과 풀시나리오 신제품 출시 컨퍼런스, 다수의 블록버스터 신제품이 함께 출시됐다 Aug 08, 2024 am 07:02 AM

오늘 오후 Hongmeng Zhixing은 공식적으로 새로운 브랜드와 신차를 환영했습니다. 8월 6일, Huawei는 Hongmeng Smart Xingxing S9 및 Huawei 전체 시나리오 신제품 출시 컨퍼런스를 개최하여 파노라마식 스마트 플래그십 세단 Xiangjie S9, 새로운 M7Pro 및 Huawei novaFlip, MatePad Pro 12.2인치, 새로운 MatePad Air, Huawei Bisheng을 선보였습니다. 레이저 프린터 X1 시리즈, FreeBuds6i, WATCHFIT3 및 스마트 스크린 S5Pro를 포함한 다양한 새로운 올-시나리오 스마트 제품, 스마트 여행, 스마트 오피스, 스마트 웨어에 이르기까지 화웨이는 풀 시나리오 스마트 생태계를 지속적으로 구축하여 소비자에게 스마트한 경험을 제공합니다. 만물인터넷. Hongmeng Zhixing: 스마트 자동차 산업의 업그레이드를 촉진하기 위한 심층적인 권한 부여 화웨이는 중국 자동차 산업 파트너와 손을 잡고

Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Li Feifei 팀은 로봇에 공간 지능을 제공하고 GPT-4o를 통합하기 위해 ReKep을 제안했습니다. Sep 03, 2024 pm 05:18 PM

비전과 로봇 학습의 긴밀한 통합. 최근 화제를 모으고 있는 1X 휴머노이드 로봇 네오(NEO)와 두 개의 로봇 손이 원활하게 협력해 옷 개기, 차 따르기, 신발 싸기 등을 하는 모습을 보면 마치 로봇 시대로 접어들고 있다는 느낌을 받을 수 있다. 실제로 이러한 부드러운 움직임은 첨단 로봇 기술 + 정교한 프레임 디자인 + 다중 모드 대형 모델의 산물입니다. 우리는 유용한 로봇이 종종 환경과 복잡하고 절묘한 상호작용을 요구한다는 것을 알고 있으며, 환경은 공간적, 시간적 영역에서 제약으로 표현될 수 있습니다. 예를 들어, 로봇이 차를 따르도록 하려면 먼저 로봇이 찻주전자 손잡이를 잡고 차를 흘리지 않고 똑바로 세운 다음, 주전자 입구와 컵 입구가 일치할 때까지 부드럽게 움직여야 합니다. 을 누른 다음 주전자를 특정 각도로 기울입니다. 이것

7개의 '소라 수준' 비디오 생성 유물을 테스트했습니다. '철왕좌'에 오를 수 있는 능력을 가진 사람은 누구입니까? 7개의 '소라 수준' 비디오 생성 유물을 테스트했습니다. '철왕좌'에 오를 수 있는 능력을 가진 사람은 누구입니까? Aug 05, 2024 pm 07:19 PM

기계력 보고서 편집자: Yang Wen AI 영상계의 왕이 될 수 있는 사람은 누구일까요? 미국 TV 시리즈 '왕좌의 게임'에는 '철왕좌'가 있다. 전설에 따르면 적들이 버린 수천 자루의 검을 녹인 거대 용 '흑사병'이 최고의 권위를 상징한다는 전설이 있다. 이 철의자에 앉기 위해 대가족들은 싸우고 또 싸우기 시작했습니다. 소라 등장 이후 AI 영상계에 왕성한 '왕좌의 게임'이 론칭됐다. 이 게임의 주역으로는 바다 건너편의 RunwayGen-3와 Luma는 물론 국내 Kuaishou Keling, ByteDream, 및 Zhimo, Vidu, PixVerseV2 등. 오늘은 AI 영상계의 '철왕좌'에 앉을 자격이 있는 사람이 누구인지 평가하고 알아보겠습니다. -1- 빈센트 비디오

See all articles