불확실한 환경에서 자율주행을 위한 궤도 계획 방법 개선
논문 제목: "향상된 모델 예측 제어를 기반으로 한 불확실한 환경에서 자율주행 자동차의 궤적 계획 방법"
발간 저널: IEEE Transactions on Intelligent Transportation Systems
발행일: 2023년 4월
다음은 저입니다. 나만의 논문 독서 노트 본 글은 전문 번역이 아닌 주로 제가 핵심이라고 생각하는 부분입니다. 본 글은 이전 글에 이어 본 논문의 실험적 검증 부분을 정리한 것입니다. 이전 글은 다음과 같습니다. 다음은 제가 직접 작성한 논문 독해 노트로, 전문 번역이 아닌 제가 핵심이라고 생각하는 부분을 위주로 정리한 글입니다. 이전 기사는 다음과 같습니다.
fhwim: 불확실한 환경에서 자율주행차를 위한 향상된 모델 예측 제어를 기반으로 한 궤도 계획 방법
https://zhuanlan.zhihu.com/p/658708080
1 시뮬레이션 검증
(1) 시뮬레이션 환경
공동 시뮬레이션 도구에는 Prescan, PyCharm, Matlab/Simulink가 포함되며, 그 중 Prescan을 사용하여 시뮬레이션된 교통 장면을 구축하고 PyCharm(쉽게 신경망 또는 pytorch 사용)을 사용하여 융합 예측 모듈을 작성합니다. , Matlab/Simulink(MPC 툴박스 포함)는 궤적 계획 모듈을 구축하고 차량 제어를 실현하는 데 사용됩니다. 전반적인 도구 선택 아이디어는 비교적 자연스럽고 합리적입니다. 이 부분을 제어하는데 사용되는 수평 제어는 LQR, 수직 제어는 PID를 사용하는데 이 역시 비교적 일반적인 제어 방식이다. 융합 예측 모듈의 LSTM 인코더-디코더는 오픈 소스 코드를 사용합니다. 저자는 참고 문헌 [31] Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances에서 따왔다고 밝혔는데, 이 글이 2011년에 출판된 것으로 봤습니다. 조금 오래되었습니다(2011년의 LSTM 인코더-디코드는 어디에 있었습니까?). 작성자가 이를 기반으로 코드를 변경했는지는 알 수 없습니다.
그림 1 시뮬레이션 환경 설정
(2) MRPI 세트 얻기
그림 2 MRPI 세트 서브시스템
(3) 사례 1: 정적 회피 장애물 장면
정적 장애물 회피 장면은 정지해 있는 장애물 차량을 의미합니다. 궤적 계획 결과는 다음과 같습니다.
그림 3의 일반 MPC 방법과 파이프라인 기반 MPC 방법을 비교
여기서 그는 전설이 있다고 의심합니다. 질문, 이전 기사에 따르면 원하는 궤적과 조정 궤적을 추가하여 최종 참조 궤적을 얻는 동시에 결과를 분석할 때 튜브 기반 MPC가 영역에 있다고 말했습니다. 그림 3(b)의 조정 궤적은 오류를 줄이므로 그림 3(b)의 원하는 궤적과 참조 궤적의 두 범례가 일치해야 합니다. )을 교환해야 합니다. 즉, 녹색 선이 최종 기준 궤적입니다. 파란색 선은 원하는 중간 결과 궤적입니다. 아래의 속도 곡선과 수평 및 수직 오차 곡선을 포함하면 저자가 의미하는 바를 이해할 수 있을 것입니다. 튜브 기반 MPC의 녹색 곡선은 최종 결과이고 파란색 곡선은 조정 궤적을 적용하지 않은 결과입니다.
그림 4는 일반 MPC 방법과 파이프라인 기반 MPC 방법의 속도 변화 비교를 보여줍니다.
그림 5 가로 위치 비교
다시 작성해야 할 내용은 다음과 같습니다. 수평 및 수직 오류 그림 6
저자는 스티어링 휠 각도 변화의 부드러움도 비교했는데, 여기서는 자세히 설명하지 않겠습니다. 동시에 저자는 궤적 조정의 좋은 효과에 대한 이론적 근거를 제시했습니다. 이를 추가한 후 궤적 오류는 항상 MRPI 세트 내에 있습니다. 즉, 튜브 기반 모델 예측 제어의 추적 편차입니다. (튜브 기반 MPC)는 항상 MRPI 세트 내에 있습니다. 일반 모델 예측 제어(MPC)는 불확실한 환경에서 경계가 없으며 이는 매우 클 수 있습니다.
(4) 사례 2: 동적 장애물 회피 장면
과 비교 이전 장면에서는 이제 장애물 차량이 움직이기 시작합니다. 전반적인 궤적, 속도 변화, 수평 및 수직 오류, 스티어링 휠 변화의 부드러움에 대해서는 자세히 설명하지 않습니다. 여기서는 전체 궤적만 보여줍니다
그림 7 일반 MPC 방식과 튜브 기반 MPC 방식의 전체 궤적 비교
(5) 사례 3: 실제 주행 장면
여기서는 저자는 NGSIM 데이터세트를 사용하여 방법을 검증하기로 선택했습니다. 첫째, 저자는 융합 예측 방법을 검증했습니다. NGSIM 데이터 세트에는 차량 궤적 데이터가 포함되어 있으며, 저자는 이를 과거 궤적과 미래 궤적으로 나누고 LSTM 인코더-디코더가 학습할 수 있는 훈련 세트를 구성했습니다. 저자는 10,000개의 궤적을 선택했으며 그 중 7,500개는 훈련 세트로 사용되었고 2,500개는 검증 세트로 사용되었습니다. 최적화 프로그램은 Adam을 가져와 학습률을 0.01로 설정합니다. 예측 효과는 아래 그림과 같습니다
그림 8 수평 및 수직 궤도 예측 결과와 불확실성
이 글에서 저자는 ADE와 같이 궤도 예측 분야에서 일반적으로 사용되는 지표를 사용하지 않았습니다. FDE 등 이 접근 방식은 설득력이 없다고 생각하지만, 이 글의 초점은 튜브 기반 MPC 기반의 궤적 계획이라는 것도 이해할 수 있습니다
궤적 예측을 확인한 후, 궤적 예측 모듈의 역할을 더욱 검증하기 위해 궤적 계획을 수행했습니다. . 비교는 다음과 같습니다. 세 가지 상황이 있습니다.
(a) 장애물 자동차의 실제 미래 궤적을 이미 알고 있는 경우 이것이 통제 그룹 역할을 합니다.
미래를 모르는 경우. 장애물 자동차의 궤적을 먼저 합니다. 궤적 예측(불확도 계산은 아님)을 한 다음 궤적 계획을 세웁니다
(c) 장애물 자동차의 미래 궤적을 알 수 없을 때 먼저 궤적 예측(불확도 계산)을 수행합니다.
그림 9는 각각 True Position, Prediction Results, Proposed Method에 해당하는 (a), (b), (c)의 결과를 보여줍니다.Proposed Method는 의 방법으로 얻은 결과입니다. 이 기사에서는 제안된 방법이 True Position에 더 가깝다는 것을 알 수 있으며 이러한 융합 예측 방법(특히 불확실성 계산)이 효과적임을 보여줍니다.2. 실제 차량 실험 검증
실험에 사용된 차량은 아래 그림과 같습니다.안전을 위해 저자가 설정한 실험 장면은 시뮬레이션 실험 사례 1과 동일합니다. 정적 장애물 회피 장면이므로 전체 궤적, 속도 변화, 수평 및 수직 오차를 비교하는 것이 좋습니다. 그리고 스티어링 휠의 부드러움이 변하는데, 이에 대해서는 자세히 설명하지 않겠습니다.
3. 읽기 요약
우선, 논문의 아이디어는 불확실성 계산을 이용한 궤적 예측 모듈과 튜브 기반 MPC 기반의 궤적 계획 모듈에 관한 것입니다. 그 중 궤적계획 모듈이 주요 내용이다. 나는 이 모듈식 형식이 실제로 궤도 계획에 궤도 예측을 적용하기 때문에 매우 만족합니다. 예측의 출력은 계획의 입력으로 사용되며 계획 모듈은 예측 모듈의 안전 임계값만 결정하므로 두 모듈 간의 결합이 약합니다. 즉, 예측모듈은 장애물 차량의 궤적과 불확실성을 예측한 결과를 제공할 수 있는 한 다른 방법으로 대체될 수 있다. 미래에는 궤적과 불확실성을 직접 예측하기 위해 보다 발전된 신경망이 고려될 수 있습니다. 전체적으로 이번 융합 예측 알고리즘의 과정은 다소 복잡하지만, 논문의 아이디어는 매우 좋다고 생각합니다. 시뮬레이션과 실제 차량 테스트에 대한 아이디어와 작업량도 만족스럽습니다
둘째, 기사를 읽으면서 발견된 낮은 수준의 오류가 있습니다. 예를 들어 LSTM 인코더-디코더 부분에서 LSTM 출력은 미래 단계의 궤적 지점으로 수식에도 쓰여 있지만 텍스트에서는 로 쓰여 있습니다.
Figure 13 LSTM 인코더-디코더 부분의 일부 오류
그리고 시뮬레이션 실험 부분에서 MRPI Set을 계산할 때 시스템 (21), 즉 오류 시스템을 하위 시스템으로 나눈다고 합니다. (32)와 (34), 그러나 실제로 하위 시스템 (30)과 (32)에서는 이러한 작은 오류가 전체 방법에는 영향을 미치지 않지만 독자의 독서 경험에도 영향을 미칩니다.
그림 14 시뮬레이션 실험부 MRPI 원본 텍스트 설정
그림 15의 오류 시스템은 하위 시스템 (30)과 (32)로 구분됩니다
원문 링크: https://mp .weixin.qq.com/s/0DymvaPmiCc_tf3pUArRiA
위 내용은 불확실한 환경에서 자율주행을 위한 궤도 계획 방법 개선의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











위에 작성됨 및 저자의 개인적인 이해 3DGS(3차원 가우스플래팅)는 최근 몇 년간 명시적 방사선장 및 컴퓨터 그래픽 분야에서 등장한 혁신적인 기술입니다. 이 혁신적인 방법은 수백만 개의 3D 가우스를 사용하는 것이 특징이며, 이는 주로 암시적 좌표 기반 모델을 사용하여 공간 좌표를 픽셀 값에 매핑하는 NeRF(Neural Radiation Field) 방법과 매우 다릅니다. 명시적인 장면 표현과 미분 가능한 렌더링 알고리즘을 갖춘 3DGS는 실시간 렌더링 기능을 보장할 뿐만 아니라 전례 없는 수준의 제어 및 장면 편집 기능을 제공합니다. 이는 3DGS를 차세대 3D 재구성 및 표현을 위한 잠재적인 게임 체인저로 자리매김합니다. 이를 위해 우리는 처음으로 3DGS 분야의 최신 개발 및 관심사에 대한 체계적인 개요를 제공합니다.

어제 인터뷰 도중 롱테일 관련 질문을 해본 적이 있느냐는 질문을 받아서 간략하게 요약해볼까 생각했습니다. 자율주행의 롱테일 문제는 자율주행차의 엣지 케이스, 즉 발생 확률이 낮은 가능한 시나리오를 말한다. 인지된 롱테일 문제는 현재 단일 차량 지능형 자율주행차의 운영 설계 영역을 제한하는 주요 이유 중 하나입니다. 자율주행의 기본 아키텍처와 대부분의 기술적인 문제는 해결되었으며, 나머지 5%의 롱테일 문제는 점차 자율주행 발전을 제한하는 핵심이 되었습니다. 이러한 문제에는 다양한 단편적인 시나리오, 극단적인 상황, 예측할 수 없는 인간 행동이 포함됩니다. 자율 주행에서 엣지 시나리오의 "롱테일"은 자율주행차(AV)의 엣지 케이스를 의미하며 발생 확률이 낮은 가능한 시나리오입니다. 이런 희귀한 사건

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

0. 전면 작성&& 자율주행 시스템은 다양한 센서(예: 카메라, 라이더, 레이더 등)를 사용하여 주변 환경을 인식하고 알고리즘과 모델을 사용하는 고급 인식, 의사결정 및 제어 기술에 의존한다는 개인적인 이해 실시간 분석과 의사결정을 위해 이를 통해 차량은 도로 표지판을 인식하고, 다른 차량을 감지 및 추적하며, 보행자 행동을 예측하는 등 복잡한 교통 환경에 안전하게 작동하고 적응할 수 있게 되므로 현재 널리 주목받고 있으며 미래 교통의 중요한 발전 분야로 간주됩니다. . 하나. 하지만 자율주행을 어렵게 만드는 것은 자동차가 주변에서 일어나는 일을 어떻게 이해할 수 있는지 알아내는 것입니다. 이를 위해서는 자율주행 시스템의 3차원 객체 감지 알고리즘이 주변 환경의 객체의 위치를 포함하여 정확하게 인지하고 묘사할 수 있어야 하며,

StableDiffusion3의 논문이 드디어 나왔습니다! 이 모델은 2주 전에 출시되었으며 Sora와 동일한 DiT(DiffusionTransformer) 아키텍처를 사용합니다. 출시되자마자 큰 화제를 불러일으켰습니다. 이전 버전과 비교하여 StableDiffusion3에서 생성된 이미지의 품질이 크게 향상되었습니다. 이제 다중 테마 프롬프트를 지원하고 텍스트 쓰기 효과도 향상되었으며 더 이상 잘못된 문자가 표시되지 않습니다. StabilityAI는 StableDiffusion3이 800M에서 8B 범위의 매개변수 크기를 가진 일련의 모델임을 지적했습니다. 이 매개변수 범위는 모델이 많은 휴대용 장치에서 직접 실행될 수 있어 AI 사용이 크게 줄어든다는 것을 의미합니다.

원제목: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving 논문 링크: https://arxiv.org/pdf/2402.02519.pdf 코드 링크: https://github.com/HKUST-Aerial-Robotics/SIMPL 저자 단위: Hong Kong University of Science 및 기술 DJI 논문 아이디어: 이 논문은 자율주행차를 위한 간단하고 효율적인 모션 예측 기준선(SIMPL)을 제안합니다. 기존 에이전트 센트와 비교

전면 및 시작점 작성 엔드 투 엔드 패러다임은 통합 프레임워크를 사용하여 자율 주행 시스템에서 멀티 태스킹을 달성합니다. 이 패러다임의 단순성과 명확성에도 불구하고 하위 작업에 대한 엔드투엔드 자율 주행 방법의 성능은 여전히 단일 작업 방법보다 훨씬 뒤떨어져 있습니다. 동시에 이전 엔드투엔드 방법에서 널리 사용된 조밀한 조감도(BEV) 기능으로 인해 더 많은 양식이나 작업으로 확장하기가 어렵습니다. 여기서는 희소 검색 중심의 엔드 투 엔드 자율 주행 패러다임(SparseAD)이 제안됩니다. 여기서 희소 검색은 밀집된 BEV 표현 없이 공간, 시간 및 작업을 포함한 전체 운전 시나리오를 완전히 나타냅니다. 특히 통합 스파스 아키텍처는 탐지, 추적, 온라인 매핑을 포함한 작업 인식을 위해 설계되었습니다. 게다가 무겁다.

지난 달에는 몇 가지 잘 알려진 이유로 업계의 다양한 교사 및 급우들과 매우 집중적인 교류를 가졌습니다. 교환에서 피할 수 없는 주제는 자연스럽게 엔드투엔드와 인기 있는 Tesla FSDV12입니다. 저는 이 기회를 빌어 여러분의 참고와 토론을 위해 지금 이 순간 제 생각과 의견을 정리하고 싶습니다. End-to-End 자율주행 시스템을 어떻게 정의하고, End-to-End 해결을 위해 어떤 문제가 예상되나요? 가장 전통적인 정의에 따르면, 엔드 투 엔드 시스템은 센서로부터 원시 정보를 입력하고 작업과 관련된 변수를 직접 출력하는 시스템을 의미합니다. 예를 들어 이미지 인식에서 CNN은 기존의 특징 추출 + 분류기 방식에 비해 end-to-end 방식으로 호출할 수 있습니다. 자율주행 작업에서는 다양한 센서(카메라/LiDAR)로부터 데이터를 입력받아
