GPT-3.5 또는 Jordan Llama 2 및 기타 오픈 소스 모델을 선택하시겠습니까? 종합적으로 비교해보면 답은 이렇습니다.
다양한 작업에서 GPT-3.5와 Llama 2의 매개변수를 비교함으로써 어떤 상황에서 GPT-3.5를 선택하고 어떤 상황에서 Llama 2 또는 다른 모델을 선택하는지 알 수 있습니다.
분명히 GPT-3.5 토크는 매우 비쌉니다. 본 논문에서는 수동 토크 모델이 GPT-3.5 비용의 일부만으로 GPT-3.5 성능에 접근할 수 있는지 여부를 실험적으로 검증합니다. 흥미롭게도 그 신문은 그랬습니다.
SQL 작업과 함수 표현 작업의 결과를 비교한 결과, 논문에서는 다음과 같은 사실을 발견했습니다.
GPT-3.5가 두 데이터 세트(Spider 데이터 세트의 하위 세트 및 Viggo 함수 표현 데이터 세트의 하위 세트)에서 Lora 이후의 코드보다 우수합니다. ) Llama 34B의 성능이 약간 더 좋았습니다.
GPT-3.5의 교육 비용은 4~6배 더 높으며 배포 비용도 더 높습니다.
이 실험의 결론 중 하나는 초기 검증 작업에는 GPT-3.5가 적합하지만 이후에는 Llama 2와 같은 모델이 최선의 선택이 될 수 있다는 것입니다. 간단히 요약하자면:
검증을 원하는 경우 특정 작업/데이터 세트에 대한 올바른 접근 방식을 해결하거나 완전 관리형 환경을 원하는 경우 GPT-3.5를 조정하세요.
비용을 절약하고, 데이터 세트에서 최대 성능을 얻고, 인프라 교육 및 배포에 더 많은 유연성을 갖고, 일부 데이터를 원하거나 유지하고 싶다면 Llama 2 오픈 소스 모델과 같은 것을 사용하세요.
다음으로 논문이 어떻게 구현되는지 살펴보겠습니다.
아래 그림은 SQL 작업과 함수 표현 작업을 융합하도록 훈련된 Code Llama 34B와 GPT-3.5의 성능을 보여줍니다. 결과는 GPT-3.5가 두 작업 모두에서 더 나은 정확도를 달성한다는 것을 보여줍니다.

하드웨어 사용량은 약 0.475달러인 A40 GPU를 사용했습니다.
또한 실험에서는 무서운 데이터 세트에 매우 적합한 두 개의 데이터 세트, 즉 Spider 데이터 세트의 하위 세트와 Viggo 함수 표현 데이터 세트를 열거합니다.
GPT-3.5 모델과의 공정한 비교를 위해 최소한의 하이퍼 매개변수를 사용하여 Llama에 대한 실험을 수행했습니다.
이 기사의 실험에서 두 가지 주요 선택은 전체 매개변수 매개변수 대신 Code Llama 34B 및 Lora 매개변수를 사용하는 것입니다. ˚ 실험은 LoRa 슈퍼 매개변수 구성의 규칙을 크게 따릅니다. LoRA 로드는 다음과 같습니다.
SQL 프롬프트는 다음과 같습니다.
디스플레이의 SQL 프롬프트 부분을 확인하세요. 전체 프롬프트를 보려면 원본 블로그를 확인하세요. 실험에서는 전체 Spider 데이터 세트를 사용하지 않았습니다. 구체적인 형식은 다음과 같습니다
department : Department_ID [ INT ] primary_key Name [ TEXT ] Creation [ TEXT ] Ranking [ INT ] Budget_in_Billions [ INT ] Num_Employees [ INT ] head : head_ID [ INT ] primary_key name [ TEXT ] born_state [ TEXT ] age [ INT ] management : department_ID [ INT ] primary_key management.department_ID = department.Department_ID head_ID [ INT ] management.head_ID = head.head_ID temporary_acting [ TEXT ]
CREATE TABLE table_name_12 (class VARCHAR, frequency_mhz VARCHAR, city_of_license VARCHAR)
함수 표현 프롬프트의 예 아래와 같이: 提 함수는 디스플레이의 프롬프트 부분을 나타냅니다.
이 함수는 작업 코드와 데이터 주소를 나타냅니다: https://github.com/ samlhuillier/viggo-finetune
원본 링크:
https://ragntune.com/blog/gpt3.5-vs-llama2-finetuning?continueFlag=11fc7786e20d498fc4daa79c5923e198위 내용은 GPT-3.5 또는 Jordan Llama 2 및 기타 오픈 소스 모델을 선택하시겠습니까? 종합적으로 비교해보면 답은 이렇습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











역시 Tusheng 영상이지만 PaintsUndo는 다른 경로를 택했습니다. ControlNet 작성자 LvminZhang이 다시 살기 시작했습니다! 이번에는 회화 분야를 목표로 삼고 있습니다. 새로운 프로젝트인 PaintsUndo는 출시된 지 얼마 되지 않아 1.4kstar(여전히 상승세)를 받았습니다. 프로젝트 주소: https://github.com/lllyasviel/Paints-UNDO 이 프로젝트를 통해 사용자는 정적 이미지를 입력하고 PaintsUndo는 자동으로 라인 초안부터 완성품 따라가기까지 전체 페인팅 과정의 비디오를 생성하도록 도와줍니다. . 그리는 과정에서 선의 변화가 놀랍습니다. 최종 영상 결과는 원본 이미지와 매우 유사합니다. 완성된 그림을 살펴보겠습니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 이 논문의 저자는 모두 일리노이 대학교 Urbana-Champaign(UIUC)의 Zhang Lingming 교사 팀 출신입니다. Steven Code Repair, 박사 4년차, 연구원

AI 모델이 내놓은 답변이 전혀 이해하기 어렵다면 감히 사용해 보시겠습니까? 기계 학습 시스템이 더 중요한 영역에서 사용됨에 따라 우리가 그 결과를 신뢰할 수 있는 이유와 신뢰할 수 없는 경우를 보여주는 것이 점점 더 중요해지고 있습니다. 복잡한 시스템의 출력에 대한 신뢰를 얻는 한 가지 가능한 방법은 시스템이 인간이나 다른 신뢰할 수 있는 시스템이 읽을 수 있는 출력 해석을 생성하도록 요구하는 것입니다. 즉, 가능한 오류가 발생할 수 있는 지점까지 완전히 이해할 수 있습니다. 설립하다. 예를 들어, 사법 시스템에 대한 신뢰를 구축하기 위해 우리는 법원이 자신의 결정을 설명하고 뒷받침하는 명확하고 읽기 쉬운 서면 의견을 제공하도록 요구합니다. 대규모 언어 모델의 경우 유사한 접근 방식을 채택할 수도 있습니다. 그러나 이 접근 방식을 사용할 때는 언어 모델이 다음을 생성하는지 확인하세요.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 인공 지능 개발 과정에서 LLM(대형 언어 모델)의 제어 및 안내는 항상 핵심 과제 중 하나였으며 이러한 모델이 두 가지 모두를 보장하는 것을 목표로 했습니다. 강력하고 안전하게 인간 사회에 봉사합니다. 인간 피드백(RL)을 통한 강화 학습 방법에 초점을 맞춘 초기 노력

건배! 종이 토론이 말로만 진행된다면 어떤가요? 최근 스탠포드 대학교 학생들은 arXiv 논문에 대한 질문과 의견을 직접 게시할 수 있는 arXiv 논문에 대한 공개 토론 포럼인 alphaXiv를 만들었습니다. 웹사이트 링크: https://alphaxiv.org/ 실제로 이 웹사이트를 특별히 방문할 필요는 없습니다. URL에서 arXiv를 alphaXiv로 변경하면 alphaXiv 포럼에서 해당 논문을 바로 열 수 있습니다. 논문, 문장: 오른쪽 토론 영역에서 사용자는 저자에게 논문의 아이디어와 세부 사항에 대해 질문하는 질문을 게시할 수 있습니다. 예를 들어 다음과 같이 논문 내용에 대해 의견을 제시할 수도 있습니다.

최근 새천년 7대 과제 중 하나로 알려진 리만 가설이 새로운 돌파구를 마련했다. 리만 가설은 소수 분포의 정확한 특성과 관련된 수학에서 매우 중요한 미해결 문제입니다(소수는 1과 자기 자신으로만 나눌 수 있는 숫자이며 정수 이론에서 근본적인 역할을 합니다). 오늘날의 수학 문헌에는 리만 가설(또는 일반화된 형식)의 확립에 기초한 수학적 명제가 천 개가 넘습니다. 즉, 리만 가설과 그 일반화된 형식이 입증되면 천 개가 넘는 명제가 정리로 확립되어 수학 분야에 지대한 영향을 미칠 것이며, 리만 가설이 틀린 것으로 입증된다면, 이러한 제안의 일부도 그 효과를 잃을 것입니다. MIT 수학 교수 Larry Guth와 Oxford University의 새로운 돌파구

LLM에 인과관계 사슬을 보여주면 공리를 학습합니다. AI는 이미 수학자 및 과학자의 연구 수행을 돕고 있습니다. 예를 들어, 유명한 수학자 Terence Tao는 GPT와 같은 AI 도구의 도움을 받아 자신의 연구 및 탐색 경험을 반복적으로 공유했습니다. AI가 이러한 분야에서 경쟁하려면 강력하고 신뢰할 수 있는 인과관계 추론 능력이 필수적입니다. 본 논문에서 소개할 연구에서는 작은 그래프의 인과 전이성 공리 시연을 위해 훈련된 Transformer 모델이 큰 그래프의 전이 공리로 일반화될 수 있음을 발견했습니다. 즉, Transformer가 단순한 인과 추론을 수행하는 방법을 학습하면 보다 복잡한 인과 추론에 사용될 수 있습니다. 팀이 제안하는 공리적 훈련 프레임워크는 시연만으로 패시브 데이터를 기반으로 인과 추론을 학습하는 새로운 패러다임입니다.

AIxiv 칼럼은 본 사이트에서 학술 및 기술 콘텐츠를 게재하는 칼럼입니다. 지난 몇 년 동안 이 사이트의 AIxiv 칼럼에는 전 세계 주요 대학 및 기업의 최고 연구실을 대상으로 한 2,000개 이상의 보고서가 접수되어 학술 교류 및 보급을 효과적으로 촉진하고 있습니다. 공유하고 싶은 훌륭한 작품이 있다면 자유롭게 기여하거나 보고를 위해 연락주시기 바랍니다. 제출 이메일: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com 서문 최근 몇 년 동안 다양한 분야에서 MLLM(Multimodal Large Language Model)의 적용이 눈에 띄는 성공을 거두었습니다. 그러나 많은 다운스트림 작업의 기본 모델로서 현재 MLLM은 잘 알려진 Transformer 네트워크로 구성됩니다.
