목차
방법 소개
효과 표시
기술 주변기기 일체 포함 Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.

Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.

Oct 20, 2023 pm 03:01 PM
데이터 기차

Fudan University의 연구원과 Huawei의 Noah's Ark Laboratory는 LDM(이미지 확산 모델) - VidRD(재사용 및 확산)를 기반으로 고품질 비디오를 생성하기 위한 반복 솔루션을 제안했습니다. 이 솔루션은 생성된 비디오의 품질과 시퀀스 길이를 혁신하고 제어 가능한 고품질의 긴 시퀀스 비디오 생성을 달성하는 것을 목표로 합니다. 생성된 비디오 프레임 간의 지터 문제를 효과적으로 줄이고, 높은 연구 성과 가치를 가지며, 현재 뜨거운 AIGC 커뮤니티에 기여합니다.

Latent Diffusion Model(LDM)은 Denoising Autoencoder를 기반으로 한 생성 모델로, 점진적으로 노이즈를 제거하여 무작위로 초기화된 데이터에서 고품질 샘플을 생성할 수 있습니다. 그러나 모델 교육 및 추론 중 계산 및 메모리 제한으로 인해 단일 LDM은 일반적으로 매우 제한된 수의 비디오 프레임만 생성할 수 있습니다. 기존 연구에서는 더 많은 비디오 프레임을 생성하기 위해 별도의 예측 모델을 사용하려고 시도했지만 이로 인해 추가 훈련 비용이 발생하고 프레임 수준의 지터가 발생합니다.

이 문서에서는 이미지 합성에서 LDM(잠재 확산 모델)의 놀라운 성공에 영감을 받아 "재사용 및 확산"(줄여서 VidRD)이라는 프레임워크를 제안합니다. 이 프레임워크는 LDM에서 이미 생성된 소수의 비디오 프레임 이후에 더 많은 비디오 프레임을 생성할 수 있으므로 더 길고 고품질이며 다양한 비디오 콘텐츠를 반복적으로 생성할 수 있습니다. VidRD는 효율적인 훈련을 위해 사전 훈련된 이미지 LDM 모델을 로드하고 노이즈 제거를 위해 시간 정보가 추가된 U-Net 네트워크를 사용합니다.

Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.


  • 논문 제목: 재사용 및 확산: 텍스트-비디오 생성을 위한 반복적 노이즈 제거
  • 논문 주소: https://arxiv.org/abs/2309.03549
  • 프로젝트 홈페이지: https://anonymous0x233.github.io/ReuseAndDiffuse/

이 기사의 주요 기여는 다음과 같습니다.

  1. 더 원활한 비디오를 생성하기 위해 이 기사에서는 다음을 기반으로 하는 반복 방법을 제안합니다. 타이밍 인식 LDM 모델 "텍스트-비디오" 생성 방법. 이 방법은 이미 생성된 비디오 프레임의 잠재 공간 특징을 재사용하고 매번 이전 확산 프로세스를 따라 반복적으로 더 많은 비디오 프레임을 생성할 수 있습니다.
  2. 이 기사에서는 고품질 "텍스트-비디오" 데이터 세트를 생성하기 위한 일련의 데이터 처리 방법을 설계합니다. 기존 동작 인식 데이터 세트에 대해 본 논문에서는 다중 모드 대형 언어 모델을 사용하여 비디오에 텍스트 설명을 제공합니다. 이미지 데이터의 경우 이 문서에서는 무작위 크기 조정 및 변환 방법을 사용하여 더 많은 비디오 교육 샘플을 생성합니다.
  3. UCF-101 데이터 세트에서 FVD와 IS의 두 가지 평가 지표와 시각화 결과를 검증한 결과, 정량적, 정성적 결과를 보면 VidRD 모델이 기존 방법보다 더 나은 결과를 얻은 것으로 나타났습니다.

방법 소개

Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.

그림 1. 이 기사에서 제안한 VidRD 비디오 생성 프레임워크의 도식

이 기사에서는 사전 훈련된 이미지 LDM을 LDM 훈련의 출발점으로 사용한다고 믿습니다. 고품질 비디오 합성을 위해서는 효율적이고 현명하게 선택하세요. 동시에, 이 견해는 [1, 2]와 같은 연구 작업에 의해 더욱 뒷받침됩니다. 이러한 맥락에서 이 기사에서 신중하게 설계된 모델은 사전 훈련된 안정적인 확산 모델을 기반으로 구축되었으며, 우수한 특성을 완전히 학습하고 상속합니다. 여기에는 정확한 잠재 표현을 위한 VAE(변형 자동 인코더)와 강력한 잡음 제거 네트워크 U-Net이 포함됩니다. 그림 1은 모델의 전체 아키텍처를 명확하고 직관적인 방식으로 보여줍니다.

이 기사의 모델 설계에서 주목할만한 특징은 사전 훈련된 모델 가중치를 최대한 활용한다는 것입니다. 특히, VAE의 구성요소와 U-Net의 업샘플링 및 다운샘플링 레이어를 포함한 대부분의 네트워크 레이어는 안정 확산 모델의 사전 훈련된 가중치를 사용하여 초기화됩니다. 이 전략은 모델 훈련 프로세스의 속도를 크게 높일 뿐만 아니라 모델이 처음부터 우수한 안정성과 신뢰성을 나타내도록 보장합니다. 우리 모델은 원래 잠재 기능을 재사용하고 이전 확산 프로세스를 모방하여 적은 수의 프레임이 포함된 초기 비디오 클립에서 추가 프레임을 반복적으로 생성할 수 있습니다. 또한 픽셀 공간과 잠재 공간 사이를 변환하는 데 사용되는 자동 인코더의 경우 타이밍 관련 네트워크 레이어를 디코더에 삽입하고 이러한 레이어를 미세 조정하여 시간적 일관성을 향상시킵니다.

비디오 프레임 간의 연속성을 보장하기 위해 이 문서에서는 모델에 3D Temp-conv 및 Temp-attn 레이어를 추가합니다. Temp-conv 계층은 3D 컨볼루션 작업을 구현하여 공간적 및 시간적 상관 관계를 캡처하여 비디오 시퀀스 집계의 동적 변화와 연속성을 이해할 수 있는 구조인 3D ResNet을 따릅니다. Temp-Attn 구조는 Self-attention과 유사하며 비디오 시퀀스에서 프레임 간의 관계를 분석하고 이해하는 데 사용되므로 모델이 프레임 간의 실행 정보를 정확하게 동기화할 수 있습니다. 이러한 매개변수는 훈련 중에 무작위로 초기화되며 모델이 시간 구조를 이해하고 인코딩할 수 있도록 설계되었습니다. 또한 모델 구조에 적응하기 위해 데이터 입력도 그에 따라 조정되고 조정되었습니다.

Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.

그림 2. 본 글에서 제안한 고품질 "텍스트-비디오" 학습 데이터 세트 구축 방법

VidRD 모델을 학습하기 위해 본 글에서는 대규모의 "텍스트-비디오" 학습 데이터 세트를 구축하는 방법을 제안합니다. scale "text-video" 훈련 데이터 세트 그림 2에 표시된 방법은 설명 없이 "text-image" 데이터와 "text-video" 데이터를 처리할 수 있습니다. 또한, 이 글에서는 고품질의 비디오 생성을 달성하기 위해 훈련 데이터의 워터마크 제거도 시도합니다.

현재 시장에서는 고품질 동영상 설명 데이터세트가 상대적으로 부족하지만, 동영상 분류 데이터세트는 많이 존재합니다. 이러한 데이터 세트에는 풍부한 비디오 콘텐츠가 있으며 각 비디오에는 분류 레이블이 함께 제공됩니다. 예를 들어 Moments-In-Time, Kinetics-700 및 VideoLT는 대표적인 대규모 비디오 분류 데이터 세트 3가지입니다. Kinetics-700은 700가지 인간 행동 카테고리를 다루며 600,000개 이상의 비디오 클립을 포함합니다. Moments-In-Time에는 총 100만 개가 넘는 비디오 클립과 함께 339개의 액션 카테고리가 포함되어 있습니다. 반면 VideoLT에는 1,004개의 카테고리와 250,000개의 긴 편집되지 않은 비디오가 포함되어 있습니다.

기존 동영상 데이터를 최대한 활용하기 위해 이 글에서는 이러한 동영상에 자동으로 주석을 더 자세히 추가하려고 합니다. 이 기사에서는 BLIP-2 및 MiniGPT4와 같은 다중 모드 대형 언어 모델을 사용합니다. 비디오의 키 프레임을 대상으로 하고 원래 분류 레이블을 결합하여 모델 질문 및 답변을 통해 주석을 생성하는 많은 프롬프트를 설계합니다. 이 방법은 비디오 데이터의 음성 정보를 향상시킬 뿐만 아니라, 자세한 설명이 없는 기존 비디오에 보다 포괄적이고 상세한 비디오 설명을 제공함으로써 보다 풍부한 비디오 태그 생성을 가능하게 하여 VidRD 모델이 더 나은 훈련 효과를 가져올 수 있도록 돕습니다.

또한 기존의 매우 풍부한 이미지 데이터에 대해 이 기사에서는 학습을 위해 이미지 데이터를 비디오 형식으로 변환하는 자세한 방법도 설계했습니다. 구체적인 작업은 이미지의 다양한 위치에서 다양한 속도로 이동 및 확대/축소하여 각 이미지에 독특하고 역동적인 프리젠테이션 형태를 제공하고 카메라를 움직여 실제 사물을 캡처하는 효과를 시뮬레이션하는 것입니다. 이 방법을 통해 기존의 영상 데이터를 영상 훈련에 효과적으로 활용할 수 있습니다.

효과 표시

설명 텍스트는 다음과 같습니다: "하늘에 오로라가 있는 눈밭에서의 저속 촬영.", "촛불이 타오르고 있습니다.", "밤에 빛나는 도시 위를 공격하는 장엄한 토네이도." , "아름다운 바다 기슭의 하얀 모래사장을 공중에서 바라본 모습." 더 많은 시각화 자료는 프로젝트 홈페이지에서 확인할 수 있습니다.

Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.

Figure 3. 기존 방식과 생성 효과의 시각적 비교

마지막으로 Figure 3과 같이 본 글의 생성 결과를 기존 방식 Make-A-Video와 비교한다. ] 및 Imagen Video [4]의 시각적 비교는 이 기사에서 모델의 더 나은 품질 생성 효과를 보여줍니다.

위 내용은 Fudan University와 Huawei Noah는 반복적인 고품질 비디오 생성을 달성하기 위해 VidRD 프레임워크를 제안합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! 오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! Apr 03, 2024 pm 12:04 PM

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

ddrescue를 사용하여 Linux에서 데이터 복구 ddrescue를 사용하여 Linux에서 데이터 복구 Mar 20, 2024 pm 01:37 PM

DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 안녕하세요, 일렉트릭 아틀라스입니다! 보스턴 다이나믹스 로봇 부활, 180도 이상한 움직임에 겁먹은 머스크 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. 초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. Apr 29, 2024 pm 06:55 PM

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 May 03, 2024 pm 09:01 PM

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

Sora 'Ke Ling'의 Kuaishou 버전이 테스트용으로 공개되었습니다. 120초가 넘는 비디오를 생성하고 물리학을 더 잘 이해하며 복잡한 움직임을 정확하게 모델링할 수 있습니다. Sora 'Ke Ling'의 Kuaishou 버전이 테스트용으로 공개되었습니다. 120초가 넘는 비디오를 생성하고 물리학을 더 잘 이해하며 복잡한 움직임을 정확하게 모델링할 수 있습니다. Jun 11, 2024 am 09:51 AM

무엇? 주토피아는 국내 AI로 현실이 되는 걸까? 영상과 함께 노출된 것은 '켈링'이라는 국산 대형 영상세대 신형 모델이다. Sora는 유사한 기술 경로를 사용하고 자체 개발한 여러 기술 혁신을 결합하여 크고 합리적인 움직임뿐만 아니라 물리적 세계의 특성을 시뮬레이션하고 강력한 개념적 결합 능력과 상상력을 갖춘 비디오를 제작합니다. 데이터에 따르면 Keling은 최대 1080p의 해상도로 30fps에서 최대 2분의 초장 영상 생성을 지원하며 다양한 화면비를 지원합니다. 또 다른 중요한 점은 Keling이 실험실에서 공개한 데모나 비디오 결과 시연이 아니라 단편 비디오 분야의 선두주자인 Kuaishou가 출시한 제품 수준 애플리케이션이라는 점입니다. 더욱이 백지 작성이 아닌 실용성에 중점을 두고, 출시되자마자 온라인에 진출하는 데 중점을 두고 있다. 콰이잉에서는 커링의 대형 모델이 출시됐다.

미 공군이 주목할만한 최초의 AI 전투기를 선보였습니다! 전 과정에 걸쳐 장관이 직접 간섭 없이 테스트를 진행했고, 10만 줄의 코드를 21차례 테스트했다. 미 공군이 주목할만한 최초의 AI 전투기를 선보였습니다! 전 과정에 걸쳐 장관이 직접 간섭 없이 테스트를 진행했고, 10만 줄의 코드를 21차례 테스트했다. May 07, 2024 pm 05:00 PM

최근 군계는 미군 전투기가 이제 AI를 활용해 완전 자동 공중전을 완수할 수 있다는 소식에 충격을 받았다. 네, 얼마 전 미군의 AI 전투기가 최초로 공개되면서 그 미스터리가 드러났습니다. 이 전투기의 정식 명칭은 VISTA(Variable Stability Flight Simulator Test Aircraft)로 미 공군 장관이 직접 조종해 일대일 공중전을 모의 실험한 것이다. 5월 2일, 미 공군 장관 프랭크 켄달(Frank Kendall)이 X-62AVISTA를 타고 에드워드 공군 기지에서 이륙했습니다. 1시간의 비행 동안 모든 비행 작업은 AI에 의해 자동으로 완료되었습니다. Kendall은 "지난 수십 년 동안 우리는 자율 공대공 전투의 무한한 잠재력에 대해 생각해 왔지만 항상 도달할 수 없는 것처럼 보였습니다."라고 말했습니다. 그러나 지금은,

See all articles