목차
답변 1
Yaml 파일을 사용하여 훈련 매개변수 구성
일부 연구자들은 손실 함수와 모델을 함께 작성하는 등 코드를 작성할 때 전체 시스템을 과도하게 결합하는 것을 좋아하는데, 이로 인해 전체 시스템이 영향을 받는 경우가 많습니다. 특정 작은 부분을 변경하면 후속 인터페이스도 완전히 변경되므로 코드를 잘 모듈화하면 많은 시간을 절약할 수 있습니다. 일반적인 딥러닝 코드는 기본적으로 I/O 모듈, 전처리 모듈, 시각화 모듈, 모델 본체(대형 모델에 하위 모델이 포함된 경우 새 클래스를 추가해야 함) 등 여러 개의 큰 블록(pytorch를 예로 들어)으로 나눌 수 있습니다. , 손실 함수, 후처리 및 교육 또는 테스트 스크립트에 연결됩니다. 코드 모듈화의 또 다른 이점은 쉽게 읽을 수 있도록 yaml에서 매개변수의 다양한 측면을 정의할 수 있다는 것입니다. 또한 importlib 라이브러리는 많은 성숙한 코드에서 사용됩니다. 이를 통해 코드 학습 중에 사용할 모델이나 하위 모델을 결정할 수 없지만 yaml에서 직접 정의할 수 있습니다.
2. 서로 다른 모델을 분리해 보세요
3. 어느 정도 안정성을 유지하면서 프레임워크의 새 버전을 정기적으로 후속 조치합니다.
4. 훈련 세션에는 시간이 오래 걸립니다. 코딩 후 맹목적으로 실험을 시작하지 마세요. 개인적인 경험에 따르면 작은 데이터와 더 많은 로그를 실험하려면 디버그 모드를 제공하는 것이 좋습니다.
5. 언제든지 돌아가서 다시 시작해야 할 수 있으므로 모델 업데이트 성능의 변경 사항을 기록하세요.
Tensorboard는 실험 데이터를 기록합니다.
구성 파일
TensorBoard 데이터 시각화 효과
WandB는 실험 데이터를 기록합니다
Config 배급 파일
Wandb 데이터 시각화 효과
Neptume은 실험 데이터를 기록
Neptume 시각화 효과
ml 흐름 기록 실험 data
MLFlow 시각화
dvclive 실험 데이터 기록
생성된 html 파일
기술 주변기기 일체 포함 딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

Oct 23, 2023 am 11:21 AM
자율주행 딥러닝

답변 1

저자: Ye Xiaofei
링크: https://www.zhihu.com/question/269707221/answer/2281374258

북미 메르세데스-벤츠에 착륙했을 때 일정 기간이 있었습니다. 다양한 구조와 매개변수를 테스트하기 위해 일주일에 100개 이상의 다양한 모델을 훈련할 수 있습니다 이러한 이유로 회사의 선배들의 관행과 내 생각을 결합하여 일련의 효율적인 코드 실험 관리 방법을 요약했습니다. 이제 프로젝트가 성공적으로 구현되는 데 도움이 되었습니다.

Yaml 파일을 사용하여 훈련 매개변수 구성

많은 오픈 소스 저장소가 입력 인수 구문 분석을 사용하여 많은 훈련 및 모델 관련 매개변수를 전송하는 것을 좋아한다는 것을 알고 있는데 이는 실제로 매우 비효율적입니다. 한편으로는 학습할 때마다 수많은 매개변수를 수동으로 입력해야 하는 번거로움이 따르며, 기본값을 직접 변경한 후 코드로 이동하여 변경한다면 시간이 많이 낭비될 것입니다. 여기에서는 Yaml 파일을 직접 사용하여 모든 모델 및 교육 관련 매개 변수를 제어하고 Yaml 이름을 모델 이름 및 타임스탬프와 연결하는 것이 좋습니다. 이는 다음과 같이 유명한 3D 포인트 클라우드 감지 라이브러리 OpenPCDet이 수행하는 작업입니다. 이 링크. github.com/open-mmlab/OpenPCDet/blob/master/tools/cfgs/kitti_models/pointrcnn.yaml

아래 그림과 같이 위에 제공된 링크에서 yaml 파일의 일부를 잘라냈습니다. 이 구성은 파일 커버 여기에는 포인트 클라우드 전처리 방법, 분류 유형, 백본의 다양한 매개변수, 최적화 및 손실 선택이 포함됩니다(그림에는 표시되지 않음, 자세한 내용은 위 링크를 참조하세요). 즉,

기본적으로 모델에 영향을 미칠 수 있는 모든 요소가 이 파일에 포함되어 있으며

​​코드에서는 간단한 yaml.load()만 사용하면 dict에서 이러한 모든 매개변수를 읽을 수 있습니다. 더 중요한 것은 이 구성 파일을 체크포인트와 동일한 폴더에 저장할 수 있으므로 중단점 교육, 미세 조정 또는 직접 테스트에 직접 사용할 수 있다는 것입니다. 결과를 테스트에 사용하는 것도 매우 편리합니다. 해당 매개변수.

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?코드 모듈화는 매우 중요합니다

일부 연구자들은 손실 함수와 모델을 함께 작성하는 등 코드를 작성할 때 전체 시스템을 과도하게 결합하는 것을 좋아하는데, 이로 인해 전체 시스템이 영향을 받는 경우가 많습니다. 특정 작은 부분을 변경하면 후속 인터페이스도 완전히 변경되므로 코드를 잘 모듈화하면 많은 시간을 절약할 수 있습니다. 일반적인 딥러닝 코드는 기본적으로 I/O 모듈, 전처리 모듈, 시각화 모듈, 모델 본체(대형 모델에 하위 모델이 포함된 경우 새 클래스를 추가해야 함) 등 여러 개의 큰 블록(pytorch를 예로 들어)으로 나눌 수 있습니다. , 손실 함수, 후처리 및 교육 또는 테스트 스크립트에 연결됩니다. 코드 모듈화의 또 다른 이점은 쉽게 읽을 수 있도록 yaml에서 매개변수의 다양한 측면을 정의할 수 있다는 것입니다. 또한 importlib 라이브러리는 많은 성숙한 코드에서 사용됩니다. 이를 통해 코드 학습 중에 사용할 모델이나 하위 모델을 결정할 수 없지만 yaml에서 직접 정의할 수 있습니다.

Tensorboard, tqdm

저는 기본적으로 매번 이 두 라이브러리를 사용합니다. Tensorboard는 훈련의 손실 곡선 변화를 매우 잘 추적할 수 있으므로 모델이 여전히 수렴되고 과적합되는지 여부를 더 쉽게 판단할 수 있습니다. 이미지 관련 작업을 수행하는 경우 시각화 결과를 모델에 적용할 수도 있습니다. 모델이 어떻게 작동하는지 기본적으로 확인하기 위해 텐서보드의 수렴 상태를 살펴봐야 하는 경우가 많습니다. Tqdm을 사용하면 학습 진행 상황을 직관적으로 추적하여 더 쉽게 수행할 수 있습니다. 조기 중지 .

Github을 최대한 활용하세요

여러 사람과 공동 개발을 하든, 단독 프로젝트를 진행하든 Github(회사에서는 비트버킷을 어느 정도 사용할 수 있음)를 사용하여 코드를 기록하는 것이 좋습니다. 자세한 내용은 제 답변을 참조하세요.

대학원생으로서 어떤 과학 연구 도구가 유용하다고 생각하시나요?

https://www.zhihu.com/question/484596211/answer/2163122684

실험 결과 기록

저는 보통 실험 결과를 기록하기 위해 일반 엑셀을 저장합니다. 첫 번째 열은 에 해당하는 yaml의 경로입니다. 첫 번째 열은 모델에 해당하는 yaml의 경로입니다. 두 번째 열은 모델 학습 에포크이고, 세 번째 열은 테스트 결과의 로그입니다. 저는 일반적으로 전체 Excel을 자동화합니다. 경로는 테스트 스크립트에 제공되며 pandas를 사용하여 쉽게 수행할 수 있습니다.

답변 2

저자: Jason 링크: https://www.zhihu.com/question/269707221/answer/470576066

Git 관리 코드는 딥러닝이나 과학적 연구와 관련이 없습니다. 코드를 작성해야 합니다. 버전 관리 도구를 사용하세요. 개인적으로 GitHub를 사용할지 말지는 선택의 문제라고 생각합니다. 결국 회사의 모든 코드를 외부 Git에 연결하는 것은 불가능합니다.

코드 작성 시 주의해야 할 몇 가지 사항에 대해 이야기해 보겠습니다.

1. 구성 파일을 사용하여 테스트 매개변수를 전달하고, 구성을 로그 파일과 동일한 이름으로 저장해 보세요.

외부 매개변수를 전달하면 매개변수로 인해 git에서 너무 많은 버전 수정을 피할 수 있습니다. DL은 디버깅하기 쉽지 않기 때문에 때로는 코드 비교를 위해 git을 사용해야 하는 경우도 있습니다.

반면에 수천 가지 버전을 테스트한 후에는 어떤 모델에 어떤 매개변수가 있는지 알 수 없을 것입니다. 좋은 습관이 매우 효과적입니다. 또한, 이전 버전의 구성 파일 호출을 용이하게 하기 위해 새로 추가된 매개변수에 대해 기본값을 제공하십시오.

2. 서로 다른 모델을 분리해 보세요

같은 프로젝트에서 좋은 재사용성은 매우 좋은 프로그래밍 습관이지만, 빠르게 발전하는 DL 코딩에서는 프로젝트가 작업 중심이라고 가정합니다. 예, 때로는 그럴 수도 있습니다. 방해가 되므로 재사용 가능한 일부 기능을 추출해 보십시오. 모델 구조와 관련하여 서로 다른 모델을 서로 다른 파일로 분리해 보십시오. 그러면 향후 업데이트가 더 편리해집니다. 그렇지 않으면 겉보기에 아름다워 보이는 디자인도 몇 달 후에는 쓸모 없게 될 것입니다.

3. 어느 정도 안정성을 유지하면서 프레임워크의 새 버전을 정기적으로 후속 조치합니다.

프로젝트 시작부터 끝까지 프레임워크가 여러 버전으로 업데이트되는 경우가 종종 있습니다. 새 버전에는 군침이 도는 기능이 있지만 안타깝게도 일부 API가 변경되었습니다. 따라서 프로젝트 내에서 프레임워크 버전을 안정적으로 유지하려고 노력할 수 있습니다. 프로젝트를 시작하기 전에 다양한 버전의 장단점을 고려해보세요.

또한, 다양한 프레임워크에 대해 관용적인 마음을 가지세요.

4. 훈련 세션에는 시간이 오래 걸립니다. 코딩 후 맹목적으로 실험을 시작하지 마세요. 개인적인 경험에 따르면 작은 데이터와 더 많은 로그를 실험하려면 디버그 모드를 제공하는 것이 좋습니다.

5. 언제든지 돌아가서 다시 시작해야 할 수 있으므로 모델 업데이트 성능의 변경 사항을 기록하세요.

저작자: OpenMMLab
링크: https://www.zhihu.com/question/269707221/answer/2480772257
출처: Zhihu
저작권은 저작자에게 있습니다. 상업적인 재인쇄의 경우 저자에게 연락하여 승인을 받으시기 바랍니다. 비상업적 재인쇄의 경우 출처를 명시해 주시기 바랍니다.

안녕하세요, 질문자님, 이전 답변에서는 Tensorboard, Weights&Biases, MLFlow, Neptune 및 기타 도구를 사용하여 실험 데이터를 관리하는 것에 대해 언급했습니다. 그러나 실험적인 관리 도구를 위해 점점 더 많은 바퀴가 만들어지면서 도구를 배우는 데 드는 비용이 점점 더 높아지고 있습니다. 어떻게 선택해야 할까요?

MMCV는 모든 환상을 충족시키며 구성 파일을 수정하여 도구를 전환할 수 있습니다.

github.com/open-mmlab/mmcv

Tensorboard는 실험 데이터를 기록합니다.

구성 파일:

log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ])
로그인 후 복사

TensorBoard 데이터 시각화 효과

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

WandB는 실험 데이터를 기록합니다

Config 배급 파일

log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), dict(type='WandbLoggerHook') ])
로그인 후 복사

Wandb 데이터 시각화 효과

(Python API로 wandb에 미리 로그인해야 함)

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

Neptume은 실험 데이터를 기록

구성 파일

log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), dict(type='NeptuneLoggerHook',  init_kwargs=dict(project='Your Neptume account/mmcv')) ])
로그인 후 복사

Neptume 시각화 효과

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

ml 흐름 기록 실험 data

구성 파일

log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), dict(type='MlflowLoggerHook') ])
로그인 후 복사

MLFlow 시각화

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

dvclive 실험 데이터 기록

구성 파일

log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), dict(type='DvcliveLoggerHook') ])
로그인 후 복사

생성된 html 파일

딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?

위에서는 가장 기본적인 기능만 사용합니다. 다양한 실험 관리 도구의 , 프로필을 추가로 수정하여 더 많은 포즈를 잠금 해제할 수 있습니다.

MMCV를 갖는 것은 모든 실험 관리 도구를 갖는 것과 같습니다. 이전에 tf 소년이었다면 TensorBoard의 고전적인 향수 스타일을 선택할 수 있습니다. 모든 실험 데이터와 실험 환경을 기록하고 싶다면 Wandb(Weights & Biases) 또는 Neptume을 사용해 볼 수도 있습니다. 인터넷에 연결되어 있으면 mlflow를 선택하여 실험 데이터가 로컬에 저장되며 항상 적합한 도구가 있습니다.

또한 MMCV에는 TextLoggerHook이라는 자체 로그 관리 시스템도 있습니다! 장치 환경, 데이터 세트, 모델 초기화 방법, 손실, 메트릭 및 훈련 중에 생성된 기타 정보와 같이 훈련 프로세스 중에 생성된 모든 정보를 로컬 xxx.log 파일에 저장합니다. 도구를 사용하지 않고도 이전 실험 데이터를 검토할 수 있습니다.

아직도 어떤 실험 관리 도구를 사용해야 할지 궁금하신가요? 아직도 다양한 도구의 학습비용이 걱정되시나요? 서둘러 MMCV에 탑승하여 단 몇 줄의 구성 파일만으로 다양한 도구를 손쉽게 경험해 보세요.

github.com/open-mmlab/mmcv

위 내용은 딥러닝 과학 연구에서 코드와 실험을 효율적으로 관리하는 방법은 무엇일까요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

자율주행 시나리오에서 롱테일 문제를 해결하는 방법은 무엇입니까? 자율주행 시나리오에서 롱테일 문제를 해결하는 방법은 무엇입니까? Jun 02, 2024 pm 02:44 PM

어제 인터뷰 도중 롱테일 관련 질문을 해본 적이 있느냐는 질문을 받아서 간략하게 요약해볼까 생각했습니다. 자율주행의 롱테일 문제는 자율주행차의 엣지 케이스, 즉 발생 확률이 낮은 가능한 시나리오를 말한다. 인지된 롱테일 문제는 현재 단일 차량 지능형 자율주행차의 운영 설계 영역을 제한하는 주요 이유 중 하나입니다. 자율주행의 기본 아키텍처와 대부분의 기술적인 문제는 해결되었으며, 나머지 5%의 롱테일 문제는 점차 자율주행 발전을 제한하는 핵심이 되었습니다. 이러한 문제에는 다양한 단편적인 시나리오, 극단적인 상황, 예측할 수 없는 인간 행동이 포함됩니다. 자율 주행에서 엣지 시나리오의 "롱테일"은 자율주행차(AV)의 엣지 케이스를 의미하며 발생 확률이 낮은 가능한 시나리오입니다. 이런 희귀한 사건

카메라 또는 LiDAR를 선택하시겠습니까? 강력한 3D 객체 감지 달성에 대한 최근 검토 카메라 또는 LiDAR를 선택하시겠습니까? 강력한 3D 객체 감지 달성에 대한 최근 검토 Jan 26, 2024 am 11:18 AM

0. 전면 작성&& 자율주행 시스템은 다양한 센서(예: 카메라, 라이더, 레이더 등)를 사용하여 주변 환경을 인식하고 알고리즘과 모델을 사용하는 고급 인식, 의사결정 및 제어 기술에 의존한다는 개인적인 이해 실시간 분석과 의사결정을 위해 이를 통해 차량은 도로 표지판을 인식하고, 다른 차량을 감지 및 추적하며, 보행자 행동을 예측하는 등 복잡한 교통 환경에 안전하게 작동하고 적응할 수 있게 되므로 현재 널리 주목받고 있으며 미래 교통의 중요한 발전 분야로 간주됩니다. . 하나. 하지만 자율주행을 어렵게 만드는 것은 자동차가 주변에서 일어나는 일을 어떻게 이해할 수 있는지 알아내는 것입니다. 이를 위해서는 자율주행 시스템의 3차원 객체 감지 알고리즘이 주변 환경의 객체의 위치를 ​​포함하여 정확하게 인지하고 묘사할 수 있어야 하며,

ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. ORB-SLAM3를 넘어! SL-SLAM: 저조도, 심한 흔들림, 약한 텍스처 장면을 모두 처리합니다. May 30, 2024 am 09:35 AM

이전에 작성했던 오늘은 딥 러닝 기술이 복잡한 환경에서 비전 기반 SLAM(동시 위치 파악 및 매핑)의 성능을 향상할 수 있는 방법에 대해 논의합니다. 심층 특징 추출과 깊이 일치 방법을 결합하여 저조도 조건, 동적 조명, 질감이 약한 영역 및 심한 지터와 같은 까다로운 시나리오에서 적응을 향상하도록 설계된 다목적 하이브리드 시각적 SLAM 시스템을 소개합니다. 우리 시스템은 확장 단안, 스테레오, 단안 관성 및 스테레오 관성 구성을 포함한 여러 모드를 지원합니다. 또한 시각적 SLAM을 딥러닝 방법과 결합하여 다른 연구에 영감을 주는 방법도 분석합니다. 공개 데이터 세트 및 자체 샘플링 데이터에 대한 광범위한 실험을 통해 위치 정확도 및 추적 견고성 측면에서 SL-SLAM의 우수성을 입증합니다.

자율주행과 궤도예측에 관한 글은 이 글이면 충분합니다! 자율주행과 궤도예측에 관한 글은 이 글이면 충분합니다! Feb 28, 2024 pm 07:20 PM

자율주행 궤적 예측은 차량의 주행 과정에서 발생하는 다양한 데이터를 분석하여 차량의 향후 주행 궤적을 예측하는 것을 의미합니다. 자율주행의 핵심 모듈인 궤도 예측의 품질은 후속 계획 제어에 매우 중요합니다. 궤적 예측 작업은 풍부한 기술 스택을 보유하고 있으며 자율 주행 동적/정적 인식, 고정밀 지도, 차선, 신경망 아키텍처(CNN&GNN&Transformer) 기술 등에 대한 익숙함이 필요합니다. 시작하기가 매우 어렵습니다! 많은 팬들은 가능한 한 빨리 궤도 예측을 시작하여 함정을 피하기를 희망합니다. 오늘은 궤도 예측을 위한 몇 가지 일반적인 문제와 입문 학습 방법을 살펴보겠습니다. 관련 지식 입문 1. 미리보기 논문이 순서대로 되어 있나요? A: 먼저 설문조사를 보세요, p

SIMPL: 자율 주행을 위한 간단하고 효율적인 다중 에이전트 동작 예측 벤치마크 SIMPL: 자율 주행을 위한 간단하고 효율적인 다중 에이전트 동작 예측 벤치마크 Feb 20, 2024 am 11:48 AM

원제목: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving 논문 링크: https://arxiv.org/pdf/2402.02519.pdf 코드 링크: https://github.com/HKUST-Aerial-Robotics/SIMPL 저자 단위: Hong Kong University of Science 및 기술 DJI 논문 아이디어: 이 논문은 자율주행차를 위한 간단하고 효율적인 모션 예측 기준선(SIMPL)을 제안합니다. 기존 에이전트 센트와 비교

nuScenes의 최신 SOTA | SparseAD: Sparse 쿼리는 효율적인 엔드투엔드 자율주행을 지원합니다! nuScenes의 최신 SOTA | SparseAD: Sparse 쿼리는 효율적인 엔드투엔드 자율주행을 지원합니다! Apr 17, 2024 pm 06:22 PM

전면 및 시작점 작성 엔드 투 엔드 패러다임은 통합 프레임워크를 사용하여 자율 주행 시스템에서 멀티 태스킹을 달성합니다. 이 패러다임의 단순성과 명확성에도 불구하고 하위 작업에 대한 엔드투엔드 자율 주행 방법의 성능은 여전히 ​​단일 작업 방법보다 훨씬 뒤떨어져 있습니다. 동시에 이전 엔드투엔드 방법에서 널리 사용된 조밀한 조감도(BEV) 기능으로 인해 더 많은 양식이나 작업으로 확장하기가 어렵습니다. 여기서는 희소 검색 중심의 엔드 투 엔드 자율 주행 패러다임(SparseAD)이 제안됩니다. 여기서 희소 검색은 밀집된 BEV 표현 없이 공간, 시간 및 작업을 포함한 전체 운전 시나리오를 완전히 나타냅니다. 특히 통합 스파스 아키텍처는 탐지, 추적, 온라인 매핑을 포함한 작업 인식을 위해 설계되었습니다. 게다가 무겁다.

하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 하나의 기사로 이해하기: AI, 머신러닝, 딥러닝 간의 연결과 차이점 Mar 02, 2024 am 11:19 AM

오늘날 급속한 기술 변화의 물결 속에서 인공지능(AI), 머신러닝(ML), 딥러닝(DL)은 정보기술의 새로운 물결을 이끄는 밝은 별과도 같습니다. 이 세 단어는 다양한 최첨단 토론과 실제 적용에 자주 등장하지만, 이 분야를 처음 접하는 많은 탐험가들에게는 그 구체적인 의미와 내부 연관성이 여전히 수수께끼에 싸여 있을 수 있습니다. 그럼 먼저 이 사진을 보시죠. 딥러닝, 머신러닝, 인공지능 사이에는 밀접한 상관관계와 진보적인 관계가 있음을 알 수 있습니다. 딥러닝은 머신러닝의 특정 분야이며, 머신러닝은

엔드투엔드(End-to-End)와 차세대 자율주행 시스템, 그리고 엔드투엔드 자율주행에 대한 몇 가지 오해에 대해 이야기해볼까요? 엔드투엔드(End-to-End)와 차세대 자율주행 시스템, 그리고 엔드투엔드 자율주행에 대한 몇 가지 오해에 대해 이야기해볼까요? Apr 15, 2024 pm 04:13 PM

지난 달에는 몇 가지 잘 알려진 이유로 업계의 다양한 교사 및 급우들과 매우 집중적인 교류를 가졌습니다. 교환에서 피할 수 없는 주제는 자연스럽게 엔드투엔드와 인기 있는 Tesla FSDV12입니다. 저는 이 기회를 빌어 여러분의 참고와 토론을 위해 지금 이 순간 제 생각과 의견을 정리하고 싶습니다. End-to-End 자율주행 시스템을 어떻게 정의하고, End-to-End 해결을 위해 어떤 문제가 예상되나요? 가장 전통적인 정의에 따르면, 엔드 투 엔드 시스템은 센서로부터 원시 정보를 입력하고 작업과 관련된 변수를 직접 출력하는 시스템을 의미합니다. 예를 들어 이미지 인식에서 CNN은 기존의 특징 추출 + 분류기 방식에 비해 end-to-end 방식으로 호출할 수 있습니다. 자율주행 작업에서는 다양한 센서(카메라/LiDAR)로부터 데이터를 입력받아

See all articles