목차
Actor의 장점- 비평가(A2C)
1. 낮은 분산
2. 더 빠른 학습 속도
3. 정책과 가치 기능의 결합
4. 연속 및 이산 동작 공간 지원
5. 병렬 훈련
panda-gym
1. 라이브러리를 설치합니다.
2. 라이브러리 가져오기
3. 실행 환경 만들기
4. 관찰 및 보상의 정규화
5를 추가하여 보상을 정규화합니다. A2C 모델 생성
6에서 훈련한 공식 에이전트를 사용합니다. A2C
7을 ​​훈련합니다. Agent
요약
기술 주변기기 일체 포함 Panda-Gym의 로봇팔 시뮬레이션을 이용한 Deep Q-learning 강화학습

Panda-Gym의 로봇팔 시뮬레이션을 이용한 Deep Q-learning 강화학습

Oct 31, 2023 pm 05:57 PM
기계 학습 강화 학습

강화 학습(RL)은 에이전트가 시행착오를 통해 환경에서 행동하는 방법을 학습할 수 있는 기계 학습 방법입니다. 에이전트는 원하는 결과로 이어지는 조치를 취한 것에 대해 보상을 받거나 처벌을 받습니다. 시간이 지남에 따라 에이전트는 예상 보상을 최대화하는 조치를 취하는 방법을 배웁니다

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

RL 에이전트는 일반적으로 순차적 결정 문제 수학적 프레임워크를 모델링하는 MDP(Markov Decision Process)를 사용하여 교육됩니다. MDP는 네 부분으로 구성됩니다:

  • 상태: 가능한 환경 상태의 집합입니다.
  • Action: 에이전트가 취할 수 있는 일련의 작업입니다.
  • 전환 함수: 현재 상태와 동작을 고려하여 새로운 상태로 전환할 확률을 예측하는 함수입니다.
  • 보상 기능: 각 전환에 대해 에이전트에게 보상을 할당하는 기능입니다.

에이전트의 목표는 상태를 작업에 매핑하는 정책 기능을 배우는 것입니다. 정책 기능을 통해 시간이 지남에 따라 에이전트의 예상 수익을 극대화합니다.

Deep Q-learning은 심층 신경망을 사용하여 정책 기능을 학습하는 강화 학습 알고리즘입니다. 심층 신경망은 현재 상태를 입력으로 사용하고 값 벡터를 출력합니다. 여기서 각 값은 가능한 작업을 나타냅니다. 그런 다음 에이전트는 가장 높은 값을 기반으로 작업을 수행합니다.

Deep Q-learning은 값 기반 강화 학습 알고리즘으로, 각 상태-작업 쌍의 값을 학습한다는 의미입니다. 상태-작업 쌍의 값은 에이전트가 해당 상태에서 해당 작업을 수행할 때 예상되는 보상입니다.

Actor-Critic은 가치 기반과 정책 기반을 결합한 RL 알고리즘입니다. 두 가지 구성 요소가 있습니다.

Actor: 액터는 작업 선택을 담당합니다.

비평가: 배우의 행동을 평가하는 역할을 담당합니다.

배우와 평론가는 동시에 훈련을 받습니다. 행위자는 예상 보상을 최대화하도록 훈련되고 비평가는 각 상태-행동 쌍에 대한 예상 보상을 정확하게 예측하도록 훈련됩니다.

행위자-비평가 알고리즘은 다른 강화 학습 알고리즘에 비해 몇 가지 장점이 있습니다. 첫째, 더 안정적입니다. 즉, 훈련 중에 편향이 발생할 가능성이 적습니다. 둘째, 더 효율적이므로 더 빨리 배울 수 있습니다. 셋째, 확장성이 뛰어나고 상태 공간과 행동 공간이 큰 문제에 적용할 수 있습니다.

아래 표에는 Deep Q-learning과 Actor-Critic의 주요 차이점이 요약되어 있습니다.

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

Actor의 장점- 비평가(A2C)

Actor-Critic은 정책 기반 접근 방식과 가치 기반 접근 방식을 결합한 인기 있는 강화 학습 아키텍처입니다. 다양한 강화 학습 작업을 해결하는 데 강력한 선택이 되는 많은 장점이 있습니다.

1. 낮은 분산

기존 정책 경사 방법과 비교할 때 A2C는 일반적으로 분산 훈련 중 성능이 낮습니다. 이는 A2C가 정책 그래디언트와 가치 함수를 모두 사용하고, 그래디언트 계산의 분산을 줄이기 위해 가치 함수를 사용하기 때문입니다. 낮은 분산은 학습 과정이 더 안정적이고 더 나은 전략으로 더 빠르게 수렴할 수 있음을 의미합니다

2. 더 빠른 학습 속도

A2C는 낮은 분산의 특성으로 인해 일반적으로 더 빠른 속도로 정책을 학습할 수 있습니다. 전략. 학습 속도가 빨라지면 귀중한 시간과 컴퓨팅 리소스가 절약되므로 이는 광범위한 시뮬레이션이 필요한 작업에 특히 중요합니다.

3. 정책과 가치 기능의 결합

A2C의 가장 큰 특징은 정책과 가치 기능을 동시에 학습한다는 점입니다. 이 조합을 통해 에이전트는 환경과 작업 간의 상관 관계를 더 잘 이해할 수 있으므로 정책 개선을 더 잘 이끌 수 있습니다. 가치 함수의 존재는 정책 최적화의 오류를 줄이고 훈련 효율성을 향상시키는 데에도 도움이 됩니다.

4. 연속 및 이산 동작 공간 지원

A2C는 연속 및 이산 동작을 포함한 다양한 유형의 동작 공간에 적응할 수 있으며 매우 다재다능합니다. 이로 인해 A2C는 로봇 제어부터 게임 플레이 최적화까지 다양한 작업에 적용할 수 있는 널리 적용 가능한 강화 학습 알고리즘이 됩니다.

5. 병렬 훈련

A2C는 멀티 코어를 최대한 활용하기 위해 쉽게 병렬화할 수 있습니다. 처리 서버 및 분산 컴퓨팅 리소스. 이는 더 짧은 시간에 더 많은 경험적 데이터를 수집할 수 있어 훈련 효율성이 향상된다는 것을 의미합니다.

배우 비평가 방법에는 몇 가지 장점이 있지만 초매개변수 조정 및 훈련의 잠재적인 불안정성과 같은 몇 가지 과제도 직면합니다. 그러나 경험 재생 및 대상 네트워크와 같은 적절한 조정 및 기술을 사용하면 이러한 문제를 크게 완화할 수 있으므로 배우 평론가가 강화 학습에서 귀중한 방법이 됩니다

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

panda-gym

panda-gym은 PyBullet 엔진을 기반으로 개발되었으며 주로 팬더 로봇 팔 주위로 도달, 밀기, 슬라이드, 선택 및 배치, 쌓기, 뒤집기와 같은 6가지 작업을 캡슐화합니다. OpenAI Fetch로.

使用Panda-Gym的机器臂模拟实现Deep Q-learning强化学习

아래 코드를 보여주기 위해 panda-gym을 예로 사용하겠습니다.

1. 라이브러리를 설치합니다.

먼저 강화 학습 환경을 위한 코드를 초기화해야 합니다.

!apt-get install -y \libgl1-mesa-dev \libgl1-mesa-glx \libglew-dev \xvfb \libosmesa6-dev \software-properties-common \patchelf  !pip install \free-mujoco-py \pytorch-lightning \optuna \pyvirtualdisplay \PyOpenGL \PyOpenGL-accelerate\stable-baselines3[extra] \gymnasium \huggingface_sb3 \huggingface_hub \ panda_gym
로그인 후 복사

2. 라이브러리 가져오기

import os  import gymnasium as gym import panda_gym  from huggingface_sb3 import load_from_hub, package_to_hub  from stable_baselines3 import A2C from stable_baselines3.common.evaluation import evaluate_policy from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines3.common.env_util import make_vec_env
로그인 후 복사

3. 실행 환경 만들기

env_id = "PandaReachDense-v3"  # Create the env env = gym.make(env_id)  # Get the state space and action space s_size = env.observation_space.shape a_size = env.action_space  print("\n _____ACTION SPACE_____ \n") print("The Action Space is: ", a_size) print("Action Space Sample", env.action_space.sample()) # Take a random action
로그인 후 복사

4. 관찰 및 보상의 정규화

강화 학습을 최적화하는 좋은 방법은 입력 특성을 정규화하는 것입니다. 래퍼를 통해 입력 특성의 실행 평균과 표준 편차를 계산합니다. 또한norm_reward = True

env = make_vec_env(env_id, n_envs=4)  env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)
로그인 후 복사

5를 추가하여 보상을 정규화합니다. A2C 모델 생성

Stable-Baselines3 팀

model = A2C(policy = "MultiInputPolicy",env = env,verbose=1)
로그인 후 복사

6에서 훈련한 공식 에이전트를 사용합니다. A2C

model.learn(1_000_000)  # Save the model and VecNormalize statistics when saving the agent model.save("a2c-PandaReachDense-v3") env.save("vec_normalize.pkl")
로그인 후 복사

7을 ​​훈련합니다. Agent

from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize  # Load the saved statistics eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")]) eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)  # We need to override the render_mode eval_env.render_mode = "rgb_array"  # do not update them at test time eval_env.training = False # reward normalization is not needed at test time eval_env.norm_reward = False  # Load the agent model = A2C.load("a2c-PandaReachDense-v3")  mean_reward, std_reward = evaluate_policy(model, eval_env)  print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
로그인 후 복사

요약

"panda-gym"에서는 Panda 로봇팔과 GYM 환경의 효과적인 결합을 통해 로컬에서 로봇팔에 대한 강화학습을 쉽게 수행할 수 있습니다.

Actor-Critic The Architecture 희소 보상 함수(결과가 바이너리인 경우)와 달리 에이전트가 각 시간 단계에서 점진적인 개선을 수행하는 방법을 학습하는 경우 Actor-Critic 방법이 이러한 유형의 작업에 특히 적합합니다.

정책 학습과 가치 추정을 완벽하게 결합함으로써 로봇 에이전트는 로봇 팔 엔드 이펙터를 능숙하게 조작하고 지정된 목표 위치에 정확하게 도달할 수 있습니다. 이는 로봇 제어와 같은 작업에 대한 실용적인 솔루션을 제공할 뿐만 아니라 민첩하고 정보에 입각한 의사 결정이 필요한 다양한 분야를 변화시킬 수 있는 잠재력을 가지고 있습니다


위 내용은 Panda-Gym의 로봇팔 시뮬레이션을 이용한 Deep Q-learning 강화학습의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

15가지 추천 오픈 소스 무료 이미지 주석 도구 15가지 추천 오픈 소스 무료 이미지 주석 도구 Mar 28, 2024 pm 01:21 PM

이미지 주석은 이미지 콘텐츠에 더 깊은 의미와 설명을 제공하기 위해 이미지에 레이블이나 설명 정보를 연결하는 프로세스입니다. 이 프로세스는 비전 모델을 훈련하여 이미지의 개별 요소를 보다 정확하게 식별하는 데 도움이 되는 기계 학습에 매우 중요합니다. 이미지에 주석을 추가함으로써 컴퓨터는 이미지 뒤의 의미와 맥락을 이해할 수 있으므로 이미지 내용을 이해하고 분석하는 능력이 향상됩니다. 이미지 주석은 컴퓨터 비전, 자연어 처리, 그래프 비전 모델 등 다양한 분야를 포괄하여 차량이 도로의 장애물을 식별하도록 지원하는 등 광범위한 애플리케이션을 보유하고 있습니다. 의료영상인식을 통한 질병진단. 이 기사에서는 주로 더 나은 오픈 소스 및 무료 이미지 주석 도구를 권장합니다. 1.마케센스

이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. 이 기사에서는 SHAP: 기계 학습을 위한 모델 설명을 이해하도록 안내합니다. Jun 01, 2024 am 10:58 AM

기계 학습 및 데이터 과학 분야에서 모델 해석 가능성은 항상 연구자와 실무자의 초점이었습니다. 딥러닝, 앙상블 방법 등 복잡한 모델이 널리 적용되면서 모델의 의사결정 과정을 이해하는 것이 특히 중요해졌습니다. explainable AI|XAI는 모델의 투명성을 높여 머신러닝 모델에 대한 신뢰와 확신을 구축하는 데 도움이 됩니다. 모델 투명성을 향상시키는 것은 여러 복잡한 모델의 광범위한 사용은 물론 모델을 설명하는 데 사용되는 의사 결정 프로세스와 같은 방법을 통해 달성할 수 있습니다. 이러한 방법에는 기능 중요도 분석, 모델 예측 간격 추정, 로컬 해석 가능성 알고리즘 등이 포함됩니다. 특성 중요도 분석은 모델이 입력 특성에 미치는 영향 정도를 평가하여 모델의 의사결정 과정을 설명할 수 있습니다. 모델 예측 구간 추정

투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! 투명한! 주요 머신러닝 모델의 원리를 심층적으로 분석! Apr 12, 2024 pm 05:55 PM

일반인의 관점에서 보면 기계 학습 모델은 입력 데이터를 예측된 출력에 매핑하는 수학적 함수입니다. 보다 구체적으로, 기계 학습 모델은 예측 출력과 실제 레이블 사이의 오류를 최소화하기 위해 훈련 데이터로부터 학습하여 모델 매개변수를 조정하는 수학적 함수입니다. 기계 학습에는 로지스틱 회귀 모델, 의사결정 트리 모델, 지원 벡터 머신 모델 등 다양한 모델이 있습니다. 각 모델에는 적용 가능한 데이터 유형과 문제 유형이 있습니다. 동시에, 서로 다른 모델 간에는 많은 공통점이 있거나 모델 발전을 위한 숨겨진 경로가 있습니다. 연결주의 퍼셉트론을 예로 들면, 퍼셉트론의 은닉층 수를 늘려 심층 신경망으로 변환할 수 있습니다. 퍼셉트론에 커널 함수를 추가하면 SVM으로 변환할 수 있다. 이 하나

우주탐사 및 인간정주공학 분야 인공지능의 진화 우주탐사 및 인간정주공학 분야 인공지능의 진화 Apr 29, 2024 pm 03:25 PM

1950년대에는 인공지능(AI)이 탄생했다. 그때 연구자들은 기계가 사고와 같은 인간과 유사한 작업을 수행할 수 있다는 것을 발견했습니다. 이후 1960년대에 미국 국방부는 인공 지능에 자금을 지원하고 추가 개발을 위해 실험실을 설립했습니다. 연구자들은 우주 탐사, 극한 환경에서의 생존 등 다양한 분야에서 인공지능의 응용 분야를 찾고 있습니다. 우주탐험은 지구를 넘어 우주 전체를 포괄하는 우주에 대한 연구이다. 우주는 지구와 조건이 다르기 때문에 극한 환경으로 분류됩니다. 우주에서 생존하려면 많은 요소를 고려해야 하며 예방 조치를 취해야 합니다. 과학자와 연구자들은 우주를 탐험하고 모든 것의 현재 상태를 이해하는 것이 우주가 어떻게 작동하는지 이해하고 잠재적인 환경 위기에 대비하는 데 도움이 될 수 있다고 믿습니다.

학습 곡선을 통해 과적합과 과소적합 식별 학습 곡선을 통해 과적합과 과소적합 식별 Apr 29, 2024 pm 06:50 PM

이 글에서는 학습 곡선을 통해 머신러닝 모델에서 과적합과 과소적합을 효과적으로 식별하는 방법을 소개합니다. 과소적합 및 과적합 1. 과적합 모델이 데이터에 대해 과도하게 훈련되어 데이터에서 노이즈를 학습하는 경우 모델이 과적합이라고 합니다. 과적합된 모델은 모든 예를 너무 완벽하게 학습하므로 보이지 않거나 새로운 예를 잘못 분류합니다. 과대적합 모델의 경우 완벽/거의 완벽에 가까운 훈련 세트 점수와 형편없는 검증 세트/테스트 점수를 얻게 됩니다. 약간 수정됨: "과적합의 원인: 복잡한 모델을 사용하여 간단한 문제를 해결하고 데이터에서 노이즈를 추출합니다. 훈련 세트로 사용되는 작은 데이터 세트는 모든 데이터를 올바르게 표현하지 못할 수 있기 때문입니다."

C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 C++에서 기계 학습 알고리즘 구현: 일반적인 과제 및 솔루션 Jun 03, 2024 pm 01:25 PM

C++의 기계 학습 알고리즘이 직면하는 일반적인 과제에는 메모리 관리, 멀티스레딩, 성능 최적화 및 유지 관리 가능성이 포함됩니다. 솔루션에는 스마트 포인터, 최신 스레딩 라이브러리, SIMD 지침 및 타사 라이브러리 사용은 물론 코딩 스타일 지침 준수 및 자동화 도구 사용이 포함됩니다. 실제 사례에서는 Eigen 라이브러리를 사용하여 선형 회귀 알고리즘을 구현하고 메모리를 효과적으로 관리하며 고성능 행렬 연산을 사용하는 방법을 보여줍니다.

설명 가능한 AI: 복잡한 AI/ML 모델 설명 설명 가능한 AI: 복잡한 AI/ML 모델 설명 Jun 03, 2024 pm 10:08 PM

번역기 | 검토자: Li Rui | Chonglou 인공 지능(AI) 및 기계 학습(ML) 모델은 오늘날 점점 더 복잡해지고 있으며 이러한 모델에서 생성되는 출력은 이해관계자에게 설명할 수 없는 블랙박스입니다. XAI(Explainable AI)는 이해관계자가 이러한 모델의 작동 방식을 이해할 수 있도록 하고, 이러한 모델이 실제로 의사 결정을 내리는 방식을 이해하도록 하며, AI 시스템의 투명성, 이 문제를 해결하기 위한 신뢰 및 책임을 보장함으로써 이 문제를 해결하는 것을 목표로 합니다. 이 기사에서는 기본 원리를 설명하기 위해 다양한 설명 가능한 인공 지능(XAI) 기술을 살펴봅니다. 설명 가능한 AI가 중요한 몇 가지 이유 신뢰와 투명성: AI 시스템이 널리 수용되고 신뢰되려면 사용자가 의사 결정 방법을 이해해야 합니다.

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

See all articles