Microsoft는 '인간의 학습 과정을 모방하고 AI 추론 능력을 향상시킨다'고 주장하면서 '실수로부터 배우기' 모델 훈련 방법을 출시했습니다.
Microsoft Research Asia는 최근 북경대학교, 시안교통대학교 및 기타 대학과 협력하여 "LeMA(Learning from Mistakes)"라는 인공지능 훈련 방법을 제안했습니다. 이 방법은 인간의 학습 과정을 모방해 인공지능의 추론 능력을 향상시킬 수 있다고 주장한다. 현재 자연어 처리(NLP) 작업에는 OpenAI GPT-4, 구글 aLM-2 등 대형 언어 모델이 사용되고 있다. 체인(CoT) 추론 수학적 퍼즐 작업의 성능이 좋습니다.
단, 관련 문제를 다룰 때 LLaMA-2, Baichuan-2 등 오픈소스 대형 모델의 강화가 필요합니다. 이러한 대규모 오픈소스 언어 모델의 사고 연쇄 추론 능력을 향상시키기 위해 연구팀은 LeMA 방법을 제안했습니다. 이 방법은 주로 인간의 학습 과정을 모방하고 "실수로부터 학습"
▲ 사진 출처 관련 논문
이 사이트에서 연구원의 방법은 '오답'과 '수정 정답'이 포함된 한 쌍의 데이터를 이용하여 해당 모델을 미세 조정하는 것으로 확인되었습니다.
연구원들은 GSM8K와 MATH를 사용하여 5개의 오픈 소스 대형 모델에 대한 LeMa 훈련 방법의 효과를 테스트했습니다. 결과에 따르면 개선된 LLaMA-2-70B 모델에서 GSM8K의 정확도는 각각 83.5%와 81.4%인 반면, MATH의 정확도는 각각 25.0%와 23.6%입니다
현재 연구자들은 관련 정보를 수집했습니다 LeMA GitHub에 공개되어 있습니다. 관심 있는 친구는여기를 클릭하여 점프
할 수 있습니다.위 내용은 Microsoft는 '인간의 학습 과정을 모방하고 AI 추론 능력을 향상시킨다'고 주장하면서 '실수로부터 배우기' 모델 훈련 방법을 출시했습니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











번역기 | Bugatti 리뷰 | Chonglou 이 문서에서는 GroqLPU 추론 엔진을 사용하여 JanAI 및 VSCode에서 초고속 응답을 생성하는 방법을 설명합니다. 모두가 AI의 인프라 측면에 초점을 맞춘 Groq와 같은 더 나은 대규모 언어 모델(LLM)을 구축하기 위해 노력하고 있습니다. 이러한 대형 모델의 빠른 응답은 이러한 대형 모델이 더 빠르게 응답하도록 보장하는 핵심입니다. 이 튜토리얼에서는 GroqLPU 구문 분석 엔진과 API 및 JanAI를 사용하여 노트북에서 로컬로 액세스하는 방법을 소개합니다. 이 기사에서는 코드 생성, 코드 리팩터링, 문서 입력 및 테스트 단위 생성을 돕기 위해 이를 VSCode에 통합합니다. 이 기사에서는 우리만의 인공 지능 프로그래밍 도우미를 무료로 만들 것입니다. GroqLPU 추론 엔진 Groq 소개

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

대규모 언어 모델의 잠재력이 자극됩니다. 모든 기존 시계열 모델을 능가하는 대규모 언어 모델을 훈련하지 않고도 고정밀 시계열 예측을 달성할 수 있습니다. Monash University, Ant 및 IBM Research는 여러 양식에 걸쳐 시퀀스 데이터를 처리하는 대규모 언어 모델의 기능을 성공적으로 촉진하는 일반 프레임워크를 공동으로 개발했습니다. 프레임워크는 중요한 기술 혁신이 되었습니다. 시계열 예측은 도시, 에너지, 교통, 원격 감지와 같은 일반적인 복잡한 시스템의 의사 결정에 유용합니다. 이후 대형 모델은 시계열/시공간 데이터 마이닝에 혁명을 일으킬 것으로 예상됩니다. 일반 대형 언어 모델 재프로그래밍 프레임워크 연구팀은 별도의 훈련 없이 일반 시계열 예측을 위해 대형 언어 모델을 쉽게 사용할 수 있는 일반 프레임워크를 제안했습니다. 주로 두 가지 핵심 기술이 제안되었습니다: 타이밍 입력 재프로그래밍; 시간-

휴머노이드 로봇 아메카가 2세대로 업그레이드 되었습니다! 최근 세계이동통신학회(MWC2024)에서 세계 최고 수준의 로봇 아메카(Ameca)가 다시 등장했다. 행사장 주변에는 아메카가 많은 관중을 끌어 모았습니다. GPT-4의 축복으로 Ameca는 다양한 문제에 실시간으로 대응할 수 있습니다. "춤을 추자." 감정이 있느냐는 질문에 아메카는 매우 생생해 보이는 일련의 표정으로 대답했습니다. 불과 며칠 전, Ameca의 뒤를 잇는 영국 로봇 회사인 EngineeredArts는 팀의 최신 개발 결과를 시연했습니다. 영상 속 로봇 아메카는 시각 능력을 갖고 있어 방 전체와 특정 사물을 보고 묘사할 수 있다. 가장 놀라운 점은 그녀도 할 수 있다는 것입니다.

Llama3에 대해 새로운 테스트 결과가 공개되었습니다. 대형 모델 평가 커뮤니티 LMSYS가 공개한 대형 모델 순위 목록에서 Llama3는 5위에 올랐으며, 영어 부문에서는 GPT-4와 함께 공동 1위를 차지했습니다. 다른 벤치마크와는 그림이 다릅니다. 이 목록은 모델 간 1:1 대결을 기반으로 하며, 네트워크 전체의 평가자들이 각자의 제안과 점수를 내립니다. 결국 Llama3가 5위를 차지했고, GPT-4와 Claude3 Super Cup Opus의 세 가지 버전이 그 뒤를 이었습니다. 영어 싱글 목록에서는 Llama3가 Claude를 제치고 GPT-4와 동점을 기록했습니다. 이 결과에 대해 Meta의 수석 과학자 LeCun은 매우 기뻐했으며 트윗을 통해 다음과 같이 말했습니다.

볼륨이 미쳤고, 볼륨이 미쳤고, 큰 모델이 다시 변경되었습니다. 바로 지금, 세계에서 가장 강력한 AI 모델이 하룻밤 사이에 주인이 바뀌었고 GPT-4가 제단에서 뽑혔습니다. Anthropic은 최신 Claude3 시리즈 모델을 출시했습니다. 한 문장 리뷰: 정말 GPT-4를 압도합니다! 다중 모드 및 언어 능력 지표 측면에서 Claude3이 승리합니다. Anthropic의 말에 따르면 Claude3 시리즈 모델은 추론, 수학, 코딩, 다국어 이해 및 비전 분야에서 새로운 업계 기준을 설정했습니다! Anthropic은 서로 다른 보안 개념으로 인해 OpenAI에서 "탈퇴"한 직원들이 설립한 스타트업 회사입니다. 그들의 제품은 OpenAI에 반복적으로 큰 타격을 입혔습니다. 이번에는 클로드3도 큰 수술을 받았습니다.

이 기사는 제2회 OpenHarmony 기술 컨퍼런스에서 시연된 "OpenHarmony에서 대규모 언어 모델의 로컬 배포" 결과를 오픈 소스로 제공합니다. 오픈 소스 주소: https://gitee.com/openharmony-sig/tpc_c_cplusplus/blob/master/thirdparty /InferLLM/docs/hap_integrate.md. 구현 아이디어와 단계는 경량 LLM 모델 추론 프레임워크 InferLLM을 OpenHarmony 표준 시스템에 이식하고 OpenHarmony에서 실행할 수 있는 바이너리 제품을 컴파일하는 것입니다. InferLLM은 간단하고 효율적인 L입니다.
