대형 모델이 '순위를 깨기' 위해 지름길을 택하고 있습니까? 데이터 오염 문제는 주목할 만하다
제너레이티브 AI 첫 해에는 모든 사람의 작업 속도가 훨씬 빨라졌습니다.
특히 올해는 모두가 대형 모델 출시에 힘쓰고 있습니다. 최근에는 국내외 기술 대기업과 스타트업들이 차례대로 대형 모델을 출시하는데요, 기자간담회가 시작되자마자 모두들 떴습니다. 주요 혁신을 이루었으며 각 회사는 1위 또는 1위 순위의 중요한 모델을 새로 고쳤습니다.
많은 사람들은 기술의 급속한 발전에 열광한 후 뭔가 잘못된 것 같다는 것을 발견합니다. 왜 모두가 1위 순위에 공유되는 걸까요? 이 메커니즘은 무엇입니까?
이때부터 '목록 스와핑' 문제도 주목받기 시작했습니다.
최근 WeChat Moments와 Zhihu 커뮤니티에서 대형 모델의 '순위 스와핑' 문제에 대한 논의가 점점 더 많아지고 있는 것을 확인했습니다. 특히 Zhihu에 대한 게시물: Tiangong Large Model Technical Report에서 많은 대형 모델이 순위를 높이기 위해 현장 데이터를 사용한다고 지적한 현상을 어떻게 평가하십니까? 그것은 모든 사람의 토론을 불러일으켰습니다.
링크: https://www.zhihu.com/question/628957425
많은 대형 모델 순위 메커니즘이 노출되었습니다
이 연구는 Kunlun Wanwei의 "Tiangong" 대학에서 수행되었습니다. 모델 연구팀은 지난달 말 사전 인쇄 용지 플랫폼 arXiv에 대한 기술 보고서를 발표했습니다.
문서 링크: https://arxiv.org/abs/2310.19341
문서 자체는 Tiangong의 LLM(대형 언어 모델) 시리즈인 Skywork-13B에 대한 소개입니다. 저자는 분할된 말뭉치를 활용하여 각각 일반 훈련과 도메인별 강화 훈련을 목표로 하는 2단계 훈련 방법을 소개합니다.
대형 모델에 대한 새로운 연구와 마찬가지로 저자는 인기 있는 테스트 벤치마크에서 해당 모델이 좋은 성능을 발휘했을 뿐만 아니라 많은 중국 지점 작업에서 최첨단 수준(업계 최고)을 달성했다고 밝혔습니다. . 좋은).
보고서에서 다수의 대형 모델의 실제 효과도 검증했으며, 일부 국내 대형 모델이 기회주의적 성향을 갖고 있다는 의혹을 제기했다는 점이 핵심이다. 표 8은 다음과 같습니다.
여기서 저자는 수학 응용 문제 벤치마크 GSM8K에서 업계의 여러 일반적인 대형 모델의 과적합 정도를 확인하기 위해 GPT-4를 사용하여 일부 GSM8K 샘플을 생성했습니다. 동일한 형태의 모델을 수동으로 정확성을 확인하고 생성된 데이터 세트에서 GSM8K의 원래 훈련 세트 및 테스트 세트와 비교하여 손실을 계산했습니다. 그런 다음 두 가지 측정항목이 있습니다.
Δ1은 모델 교육 중 잠재적인 테스트 데이터 누출을 나타내는 지표로 사용되며, 값이 낮을수록 누출 가능성이 있음을 나타냅니다. 테스트 세트를 훈련하지 않으면 값은 0이 되어야 합니다.
Δ2는 데이터세트 훈련 분할의 과적합 정도를 측정합니다. Δ2 값이 높을수록 과적합을 의미합니다. 훈련 세트에 대해 훈련되지 않은 경우 값은 0이어야 합니다.
간단히 설명하자면, 모델이 벤치마크 테스트의 '실제 질문'과 '답안'을 학습 중 학습 자료로 직접 사용하고 이를 점수 획득에 사용하려는 경우 여기서는 비정상이 됩니다.
좋아요, Δ1과 Δ2의 문제가 있는 부분은 위에서 회색으로 신중하게 강조 표시되어 있습니다.
네티즌들은 마침내 누군가 '데이터 세트 오염'의 공개 비밀을 알려줬다는 댓글을 남겼습니다.
일부 네티즌들은 대형 모델의 지능 수준은 여전히 기존 테스트 벤치마크로는 달성할 수 없는 제로샷 성능에 달려 있다고 말했습니다.
사진: 지후 네티즌 댓글 스크린샷
작가와 독자의 대화에서 저자는 "모든 사람이 부정행위 문제를 좀 더 이성적으로 바라볼 수 있기를 바란다. 아직 많은 모델과 GPT4 사이에는 큰 격차가 있다"고 말했다.
사진: Zhizhihu 기사 스크린샷 https://zhuanlan.zhihu.com/p/664985891
데이터 오염 문제에 주목해야 합니다
사실 이는 일시적인 현상이 아닙니다. . 벤치마크가 도입된 이후, 올해 9월 arXiv에 실린 매우 아이러니한 기사 제목에서 "테스트 세트에 대한 사전 훈련이 필요한 전부"라고 지적했듯이 이러한 문제가 때때로 발생했습니다.
또한 Renmin University와 Illinois University of Urbana-Champaign의 최근 공식 연구에서도 대형 모델 평가의 문제점이 지적되었습니다. 제목은 매우 눈길을 끕니다. "당신의 LLM을 평가 벤치마크 사기꾼으로 만들지 마십시오":
논문 링크: https://arxiv.org/abs/2311.01964
논문은 다음을 지적합니다. 현재 대형 모델의 핫 분야는 벤치마크 순위에 관심이 많지만 그 공정성과 신뢰성에 의문이 제기되는 부분이다. 가장 큰 문제는 데이터 오염 및 유출인데, 이는 사전 학습 코퍼스를 준비할 때 향후 평가 데이터 세트를 알 수 없기 때문에 의도하지 않게 발생할 수 있습니다. 예를 들어, GPT-3는 사전 훈련 코퍼스에 Children's Book Test 데이터 세트가 포함되어 있음을 발견했으며 LLaMA-2 논문에서는 BoolQ 데이터 세트에서 상황에 맞는 웹 페이지 콘텐츠를 추출하는 것에 대해 언급했습니다.
데이터 세트를 수집하고 정리하고 라벨을 지정하려면 많은 사람의 노력이 필요합니다. 고품질 데이터 세트가 평가에 사용할 만큼 좋다면 자연스럽게 다른 사람들이 대형 모델을 훈련하는 데 사용할 수도 있습니다.
한편, 기존 벤치마크를 사용하여 평가할 때 우리가 평가한 대형 모델의 결과는 대부분 로컬 서버에서 실행하거나 API 호출을 통해 얻은 결과였습니다. 이 과정에서 평가 성과를 비정상적으로 향상시킬 수 있는 부적절한 수단(예: 데이터 오염)이 엄격하게 검토되지 않았습니다.
더 나쁜 것은 학습 코퍼스(예: 데이터 소스)의 세부 구성이 기존 대형 모델의 핵심 "비밀"로 간주되는 경우가 많다는 것입니다. 이는 데이터 오염 문제를 탐구하는 것을 더욱 어렵게 만듭니다.
즉, 우수한 데이터의 양은 제한되어 있으며 많은 테스트 세트에서 GPT-4 및 Llama-2가 반드시 문제가 되지는 않습니다. 예를 들어 GSM8K는 첫 번째 논문에서 언급되었고 GPT-4는 공식 기술 보고서에서 훈련 세트를 사용하는 것을 언급했습니다.
데이터가 매우 중요하다고 하지 않나요? 그러면 "실제 질문"을 사용하여 점수를 매기는 대규모 모델의 성능은 훈련 데이터가 더 좋기 때문에 더 좋아질까요? 대답은 부정적이다.
연구원들은 벤치마크 누출로 인해 대규모 모델이 과장된 결과를 실행하게 된다는 사실을 실험적으로 발견했습니다. 예를 들어, 1.3B 모델은 일부 작업에서 크기가 10배 더 큰 모델을 능가할 수 있습니다. 그러나 부작용은 유출된 데이터를 모델을 미세 조정하거나 훈련하는 데만 사용할 경우 다른 일반적인 테스트 작업에서 이러한 대규모 테스트 전용 모델의 성능에 부정적인 영향을 미칠 수 있다는 것입니다.
따라서 저자는 앞으로 연구자들이 대형 모델을 평가하거나 신기술을 연구할 때 다음을 수행해야 한다고 제안합니다.
- 기본 기능(예: 텍스트 생성) 및 고급 기능(예: 복잡한 추론)을 다루는 다양한 소스의 더 많은 벤치마크를 사용하여 LLM의 기능을 완전히 평가합니다.
- 평가 벤치마크를 사용할 때는 사전 훈련 데이터와 관련 데이터(예: 훈련 및 테스트 세트) 간에 데이터 위생 검사를 수행하는 것이 중요합니다. 또한 평가기준에 대한 오염분석 결과를 참고자료로 보고해야 한다. 가능하다면 사전 훈련 데이터의 세부 구성을 공개하는 것이 좋습니다.
- 프롬프트 감도의 영향을 줄이기 위해 다양한 테스트 프롬프트를 사용하는 것이 좋습니다. 잠재적인 오염 위험에 대해 경고하기 위해 기준 데이터와 기존 사전 훈련 자료 간의 오염 분석을 수행하는 것도 의미가 있습니다. 평가를 위해 각 제출물에 특수 오염 분석 보고서를 첨부하는 것이 좋습니다.
드디어 이 문제가 기술 보고서든, 논문 조사든, 커뮤니티 토론이든 모두가 대형 모델의 '랭킹 스와핑' 문제에 관심을 갖기 시작했습니다.
이에 대한 귀하의 의견과 효과적인 제안은 무엇입니까?
위 내용은 대형 모델이 '순위를 깨기' 위해 지름길을 택하고 있습니까? 데이터 오염 문제는 주목할 만하다의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

기존 컴퓨팅을 능가할 뿐만 아니라 더 낮은 비용으로 더 효율적인 성능을 달성하는 인공 지능 모델을 상상해 보세요. 이것은 공상과학 소설이 아닙니다. DeepSeek-V2[1], 세계에서 가장 강력한 오픈 소스 MoE 모델이 여기에 있습니다. DeepSeek-V2는 경제적인 훈련과 효율적인 추론이라는 특징을 지닌 전문가(MoE) 언어 모델의 강력한 혼합입니다. 이는 236B 매개변수로 구성되며, 그 중 21B는 각 마커를 활성화하는 데 사용됩니다. DeepSeek67B와 비교하여 DeepSeek-V2는 더 강력한 성능을 제공하는 동시에 훈련 비용을 42.5% 절감하고 KV 캐시를 93.3% 줄이며 최대 생성 처리량을 5.76배로 늘립니다. DeepSeek은 일반 인공지능을 연구하는 회사입니다.

AI는 실제로 수학을 변화시키고 있습니다. 최근 이 문제에 주목하고 있는 타오저쉬안(Tao Zhexuan)은 '미국수학회지(Bulletin of the American Mathematical Society)' 최신호를 게재했다. '기계가 수학을 바꿀 것인가?'라는 주제를 중심으로 많은 수학자들이 그들의 의견을 표현했습니다. 저자는 필즈상 수상자 Akshay Venkatesh, 중국 수학자 Zheng Lejun, 뉴욕대학교 컴퓨터 과학자 Ernest Davis 등 업계의 유명 학자들을 포함해 강력한 라인업을 보유하고 있습니다. AI의 세계는 극적으로 변했습니다. 이 기사 중 상당수는 1년 전에 제출되었습니다.

Boston Dynamics Atlas가 공식적으로 전기 로봇 시대에 돌입했습니다! 어제 유압식 Atlas가 역사의 무대에서 "눈물을 흘리며" 물러났습니다. 오늘 Boston Dynamics는 전기식 Atlas가 작동 중이라고 발표했습니다. 상업용 휴머노이드 로봇 분야에서는 보스턴 다이내믹스가 테슬라와 경쟁하겠다는 각오를 다진 것으로 보인다. 새 영상은 공개된 지 10시간 만에 이미 100만 명이 넘는 조회수를 기록했다. 옛 사람들은 떠나고 새로운 역할이 등장하는 것은 역사적 필연이다. 올해가 휴머노이드 로봇의 폭발적인 해라는 것은 의심의 여지가 없습니다. 네티즌들은 “로봇의 발전으로 올해 개막식도 인간처럼 생겼고, 자유도도 인간보다 훨씬 크다. 그런데 정말 공포영화가 아닌가?”라는 반응을 보였다. 영상 시작 부분에서 아틀라스는 바닥에 등을 대고 가만히 누워 있는 모습입니다. 다음은 입이 떡 벌어지는 내용이다

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

이달 초 MIT와 기타 기관의 연구자들은 MLP에 대한 매우 유망한 대안인 KAN을 제안했습니다. KAN은 정확성과 해석성 측면에서 MLP보다 뛰어납니다. 그리고 매우 적은 수의 매개변수로 더 많은 수의 매개변수를 사용하여 실행되는 MLP보다 성능이 뛰어날 수 있습니다. 예를 들어 저자는 KAN을 사용하여 더 작은 네트워크와 더 높은 수준의 자동화로 DeepMind의 결과를 재현했다고 밝혔습니다. 구체적으로 DeepMind의 MLP에는 약 300,000개의 매개변수가 있는 반면 KAN에는 약 200개의 매개변수만 있습니다. KAN은 MLP와 같이 강력한 수학적 기반을 가지고 있으며, KAN은 Kolmogorov-Arnold 표현 정리를 기반으로 합니다. 아래 그림과 같이 KAN은

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라
