기술 주변기기 일체 포함 Microsoft의 최신 연구에서는 LLM 정리 및 지식 복구를 위한 LoRAShear 기술을 탐구합니다.

Microsoft의 최신 연구에서는 LLM 정리 및 지식 복구를 위한 LoRAShear 기술을 탐구합니다.

Nov 13, 2023 pm 05:37 PM
일체 포함 lorashear 언어 모델 모델

LoRAShear는 언어 모델 모델(llm)을 최적화하고 지식을 보존하기 위해 Microsoft에서 개발한 새로운 방법입니다. 구조적 가지치기가 가능해 계산 요구 사항이 줄어들고 효율성이 향상됩니다.

Microsoft의 최신 연구에서는 LLM 정리 및 지식 복구를 위한 LoRAShear 기술을 탐구합니다.

LHSPG 기술(Lora Half-Space Projected Gradient)은 점진적인 구조화 가지치기 및 동적 지식 복구를 지원합니다. 종속성 그래프 분석 및 희소성 최적화를 통해 다양한 LLM에 적용 가능

LoRAPrune은 LoRA와 반복적 구조화 프루닝을 결합하여 매개변수의 효율적인 미세 조정을 달성합니다. LLAMA v1에서 많은 가지치기 작업을 수행하더라도 성능은 상당히 높습니다

Microsoft의 최신 연구에서는 LLM 정리 및 지식 복구를 위한 LoRAShear 기술을 탐구합니다.

진화하는 인공 지능 분야에서 언어 모델 모델(llm)은 대량의 텍스트 데이터를 처리하고 관련 정보를 빠르게 검색하는 데 점점 더 인기를 얻고 있습니다. , 지식 접근성 향상을 위한 핵심 도구. 이들의 광범위한 영향은 검색 엔진 및 질문 답변 시스템 강화에서부터 데이터 분석 활성화에 이르기까지 다양한 분야에 걸쳐 연구자, 전문가 및 지식 추구자 모두에게 혜택을 줍니다.

현재 가장 큰 문제는 LLM이 정보의 역동적인 요구 사항을 충족하기 위해 지속적으로 지식을 업데이트해야 한다는 것입니다. 일반적으로 개발자는 도메인별 데이터를 사용하여 사전 훈련된 모델을 미세 조정하여 최신 상태를 유지하고 모델에 최신 통찰력을 주입합니다. LLM이 끊임없이 변화하는 정보 환경에 보조를 맞추려면 조직과 연구자에게 정기적인 업데이트가 중요합니다. 그러나 미세 조정 비용이 비싸고 주기가 길다

이러한 긴급한 요구에 부응하여 Microsoft 연구원들은 획기적인 방법인 LoRAShear를 출시했습니다. 이 혁신적인 접근 방식은 LLM을 단순화할 뿐만 아니라 구조적 지식의 복구도 촉진합니다. 구조적 가지치기의 핵심은 신경망 아키텍처의 특정 구성 요소를 제거하거나 줄여 효율성, 소형화 및 계산 요구 사항을 최적화하는 것입니다.

Microsoft의 LoRAShear는 LHSPG 기술을 사용하여 점진적인 구조화 가지치기를 지원합니다. 이 접근 방식은 LoRA 모듈 간에 지식을 원활하게 전송할 수 있으며 동적 지식 복구 단계를 통합할 수도 있습니다. 미세 조정 프로세스는 LLM이 업데이트되고 관련성을 유지하도록 사전 훈련 및 안내형 미세 조정과 유사합니다.

다음과 같이 다시 작성됨: 종속성 그래프 분석을 활용하여 LoRAShear는 특히 다음 지원 내에서 일반 LLM으로 확장될 수 있습니다. LoRA 모듈. 이 방법은 원본 LLM 및 LoRA 모듈을 사용하여 종속성 그래프를 생성하고 LoRA 모듈의 정보를 활용하여 가중치 업데이트 프로세스 중 지식 보존을 향상시키는 구조화된 희소성 최적화 알고리즘을 도입합니다.

논문에서도 LoRAPrune이라는 통합 기술은 LoRA와 반복적인 구조화 프루닝을 결합하여 매개변수의 효율적인 미세 조정과 직접적인 하드웨어 가속을 달성합니다. 이 메모리 절약 방법은 잘라내기 기준에 대한 LoRA의 가중치 및 기울기에 전적으로 의존합니다. 구체적인 프로세스에는 추적 그래프 구성, 압축해야 할 노드 그룹 결정, 학습 가능한 변수 분할 및 최종적으로 LLM

으로 반환하는 작업이 포함됩니다. 이 논문은 오픈 소스 LLAMAv1에서의 구현을 통해 LoRAShear의 효율성을 입증합니다. 특히, 20% 프루닝을 적용한 LLAMAv1은 성능 손실이 1%에 불과한 반면, 50% 프루닝을 적용한 모델은 평가 벤치마크에서 82%의 성능을 유지했습니다.

LoRAShear는 인공 지능 분야의 주요 발전을 나타냅니다. 이는 LLM 사용 방식을 단순화하여 더욱 효율적으로 만들 뿐만 아니라 중요한 지식의 보존도 보장합니다. 이를 통해 AI 기반 애플리케이션이 진화하는 정보 환경에 보조를 맞추는 동시에 컴퓨팅 리소스를 최적화할 수 있습니다. 조직이 데이터 처리 및 지식 검색을 위해 인공 지능에 점점 더 의존함에 따라 LoRAShear와 같은 솔루션은 시장에서 효율성과 지식 탄력성을 제공하는 핵심 역할을 할 것입니다.

논문 주소: https://arxiv.org/abs/2310.18356

위 내용은 Microsoft의 최신 연구에서는 LLM 정리 및 지식 복구를 위한 LoRAShear 기술을 탐구합니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

인기 기사

R.E.P.O. 에너지 결정과 그들이하는 일 (노란색 크리스탈)
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 최고의 그래픽 설정
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. 아무도들을 수없는 경우 오디오를 수정하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25 : Myrise에서 모든 것을 잠금 해제하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Bytedance Cutting, SVIP 슈퍼 멤버십 출시: 연간 연속 구독료 499위안, 다양한 AI 기능 제공 Jun 28, 2024 am 03:51 AM

이 사이트는 6월 27일에 Jianying이 ByteDance의 자회사인 FaceMeng Technology에서 개발한 비디오 편집 소프트웨어라고 보도했습니다. 이 소프트웨어는 Douyin 플랫폼을 기반으로 하며 기본적으로 플랫폼 사용자를 위한 짧은 비디오 콘텐츠를 제작합니다. Windows, MacOS 및 기타 운영 체제. Jianying은 멤버십 시스템 업그레이드를 공식 발표하고 지능형 번역, 지능형 하이라이트, 지능형 패키징, 디지털 인간 합성 등 다양한 AI 블랙 기술을 포함하는 새로운 SVIP를 출시했습니다. 가격면에서 SVIP 클리핑 월 요금은 79위안, 연간 요금은 599위안(본 사이트 참고: 월 49.9위안에 해당), 월간 연속 구독료는 월 59위안, 연간 연속 구독료는 59위안입니다. 연간 499위안(월 41.6위안)입니다. 또한, 컷 관계자는 "사용자 경험 향상을 위해 기존 VIP에 가입하신 분들도

Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Rag 및 Sem-Rag를 사용한 상황 증강 AI 코딩 도우미 Jun 10, 2024 am 11:08 AM

검색 강화 생성 및 의미론적 메모리를 AI 코딩 도우미에 통합하여 개발자 생산성, 효율성 및 정확성을 향상시킵니다. EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG에서 번역됨, 저자 JanakiramMSV. 기본 AI 프로그래밍 도우미는 자연스럽게 도움이 되지만, 소프트웨어 언어에 대한 일반적인 이해와 소프트웨어 작성의 가장 일반적인 패턴에 의존하기 때문에 가장 관련성이 높고 정확한 코드 제안을 제공하지 못하는 경우가 많습니다. 이러한 코딩 도우미가 생성한 코드는 자신이 해결해야 할 문제를 해결하는 데 적합하지만 개별 팀의 코딩 표준, 규칙 및 스타일을 따르지 않는 경우가 많습니다. 이로 인해 코드가 애플리케이션에 승인되기 위해 수정되거나 개선되어야 하는 제안이 나타나는 경우가 많습니다.

미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. 미세 조정을 통해 LLM이 실제로 새로운 것을 배울 수 있습니까? 새로운 지식을 도입하면 모델이 더 많은 환각을 생성할 수 있습니다. Jun 11, 2024 pm 03:57 PM

LLM(대형 언어 모델)은 대규모 텍스트 데이터베이스에서 훈련되어 대량의 실제 지식을 습득합니다. 이 지식은 매개변수에 내장되어 필요할 때 사용할 수 있습니다. 이러한 모델에 대한 지식은 훈련이 끝나면 "구체화"됩니다. 사전 훈련이 끝나면 모델은 실제로 학습을 중단합니다. 모델을 정렬하거나 미세 조정하여 이 지식을 활용하고 사용자 질문에 보다 자연스럽게 응답하는 방법을 알아보세요. 그러나 때로는 모델 지식만으로는 충분하지 않을 때도 있으며, 모델이 RAG를 통해 외부 콘텐츠에 접근할 수 있더라도 미세 조정을 통해 모델을 새로운 도메인에 적응시키는 것이 유익한 것으로 간주됩니다. 이러한 미세 조정은 인간 주석 작성자 또는 기타 LLM 생성자의 입력을 사용하여 수행됩니다. 여기서 모델은 추가적인 실제 지식을 접하고 이를 통합합니다.

7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 7가지 멋진 GenAI 및 LLM 기술 인터뷰 질문 Jun 07, 2024 am 10:06 AM

AIGC에 대해 자세히 알아보려면 다음을 방문하세요. 51CTOAI.x 커뮤니티 https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou는 인터넷 어디에서나 볼 수 있는 전통적인 문제 은행과 다릅니다. 고정관념에서 벗어나 생각해야 합니다. LLM(대형 언어 모델)은 데이터 과학, 생성 인공 지능(GenAI) 및 인공 지능 분야에서 점점 더 중요해지고 있습니다. 이러한 복잡한 알고리즘은 인간의 기술을 향상시키고 많은 산업 분야에서 효율성과 혁신을 촉진하여 기업이 경쟁력을 유지하는 데 핵심이 됩니다. LLM은 자연어 처리, 텍스트 생성, 음성 인식 및 추천 시스템과 같은 분야에서 광범위하게 사용될 수 있습니다. LLM은 대량의 데이터로부터 학습하여 텍스트를 생성할 수 있습니다.

대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. 대형 모델에 대한 새로운 과학적이고 복잡한 질문 답변 벤치마크 및 평가 시스템을 제공하기 위해 UNSW, Argonne, University of Chicago 및 기타 기관이 공동으로 SciQAG 프레임워크를 출시했습니다. Jul 25, 2024 am 06:42 AM

편집자 |ScienceAI 질문 응답(QA) 데이터 세트는 자연어 처리(NLP) 연구를 촉진하는 데 중요한 역할을 합니다. 고품질 QA 데이터 세트는 모델을 미세 조정하는 데 사용될 수 있을 뿐만 아니라 LLM(대형 언어 모델)의 기능, 특히 과학적 지식을 이해하고 추론하는 능력을 효과적으로 평가하는 데에도 사용할 수 있습니다. 현재 의학, 화학, 생물학 및 기타 분야를 포괄하는 과학적인 QA 데이터 세트가 많이 있지만 이러한 데이터 세트에는 여전히 몇 가지 단점이 있습니다. 첫째, 데이터 형식이 비교적 단순하고 대부분이 객관식 질문이므로 평가하기 쉽지만 모델의 답변 선택 범위가 제한되고 모델의 과학적 질문 답변 능력을 완전히 테스트할 수 없습니다. 이에 비해 개방형 Q&A는

당신이 모르는 머신러닝의 5가지 학교 당신이 모르는 머신러닝의 5가지 학교 Jun 05, 2024 pm 08:51 PM

머신 러닝은 명시적으로 프로그래밍하지 않고도 컴퓨터가 데이터로부터 학습하고 능력을 향상시킬 수 있는 능력을 제공하는 인공 지능의 중요한 분야입니다. 머신러닝은 이미지 인식, 자연어 처리, 추천 시스템, 사기 탐지 등 다양한 분야에서 폭넓게 활용되며 우리의 삶의 방식을 변화시키고 있습니다. 기계 학습 분야에는 다양한 방법과 이론이 있으며, 그 중 가장 영향력 있는 5가지 방법을 "기계 학습의 5개 학교"라고 합니다. 5개 주요 학파는 상징학파, 연결주의 학파, 진화학파, 베이지안 학파, 유추학파이다. 1. 상징주의라고도 알려진 상징주의는 논리적 추론과 지식 표현을 위해 상징을 사용하는 것을 강조합니다. 이 사고 학교는 학습이 기존을 통한 역연역 과정이라고 믿습니다.

SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 SOTA 성능, 샤먼 다중 모드 단백질-리간드 친화성 예측 AI 방법, 최초로 분자 표면 정보 결합 Jul 17, 2024 pm 06:37 PM

Editor | KX 약물 연구 및 개발 분야에서 단백질과 리간드의 결합 친화도를 정확하고 효과적으로 예측하는 것은 약물 스크리닝 및 최적화에 매우 중요합니다. 그러나 현재 연구에서는 단백질-리간드 상호작용에서 분자 표면 정보의 중요한 역할을 고려하지 않습니다. 이를 기반으로 Xiamen University의 연구자들은 처음으로 단백질 표면, 3D 구조 및 서열에 대한 정보를 결합하고 교차 주의 메커니즘을 사용하여 다양한 양식 특징을 비교하는 새로운 다중 모드 특징 추출(MFE) 프레임워크를 제안했습니다. 조정. 실험 결과는 이 방법이 단백질-리간드 결합 친화도를 예측하는 데 있어 최첨단 성능을 달성한다는 것을 보여줍니다. 또한 절제 연구는 이 프레임워크 내에서 단백질 표면 정보와 다중 모드 기능 정렬의 효율성과 필요성을 보여줍니다. 관련 연구는 "S"로 시작된다

SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. SK하이닉스가 8월 6일 12단 HBM3E, 321고 NAND 등 AI 관련 신제품을 선보인다. Aug 01, 2024 pm 09:40 PM

1일 본 사이트 소식에 따르면 SK하이닉스는 오늘(1일) 블로그 게시물을 통해 8월 6일부터 8일까지 미국 캘리포니아주 산타클라라에서 열리는 글로벌 반도체 메모리 서밋 FMS2024에 참가한다고 밝혔다. 많은 새로운 세대의 제품. 인공지능 기술에 대한 관심이 높아지고 있는 가운데, 이전에는 주로 NAND 공급업체를 대상으로 한 플래시 메모리 서밋(FlashMemorySummit)이었던 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage) 소개를 올해는 미래 메모리 및 스토리지 서밋(FutureMemoryandStorage)으로 명칭을 변경했습니다. DRAM 및 스토리지 공급업체와 더 많은 플레이어를 초대하세요. SK하이닉스가 지난해 출시한 신제품

See all articles