> 기술 주변기기 > 일체 포함 > 구글, 교통 효율성 30% 향상시킬 수 있는 새로운 AI 모델 연구

구글, 교통 효율성 30% 향상시킬 수 있는 새로운 AI 모델 연구

王林
풀어 주다: 2024-01-04 23:50:46
앞으로
785명이 탐색했습니다.

Google Research는 최근 오픈소스 시뮬레이션 소프트웨어 SUMO(Simulation of Urban Mobility)를 사용하여 개발한 '교통 안내' AI 모델의 적용 결과를 소개하는 기사를 게재했습니다

谷歌介绍“交通疏导”AI 模型研究成果,可提升 30% 交通效率

구글 연구원들은 SUMO 소프트웨어를 사용해 시애틀의 T-Mobile Park와 Lumen Field 지역의 기본 모델을 구축했으며, Google 지도에서 제공하는 혼잡량, 신호등 위치, 평균 도로 속도 등의 정보를 활용하여 세부적인 그림을 그린 것으로 알려졌습니다. 히트맵

▲ 사진출처 구글 공식 보도자료(아래동일)

이후 연구팀은 히트맵을 여러 영역으로 나누고 시애틀 경찰청에서 제공하는 '사용자 행동 모델'과 경로 제안을 도입하여 자동차 소유자에게 최적의 경로를 할당할 수 있는 '교통 우회' 모델을 구축했습니다.

谷歌介绍“交通疏导”AI 模型研究成果,可提升 30% 交通效率

IT House의 보도자료에 따르면 Google 연구원들은 미국 시애틀 교통부와 협력하여 2023년 8월과 11월에 여러 대규모 행사에 교통 우회 인공지능 모델을 실제로 적용하고 '동적 안내 디스플레이'를 사용했습니다. 화면(동적 메시지 표지판)'을 ​​사용한 결과, 정체시간은 평균 7분 단축되었으며, 교통효율성 30% 향상에 성공한 것으로 나타났습니다

Google에 따르면, 이 연구는 대규모 행사장의 교통 효율성을 향상시키고 도로 계획자가 활용도가 낮은 도로 구간을 이해하여 전반적인 교통 환경을 개선할 수 있는 교통 계획의 '시뮬레이션 기술'의 잠재력을 보여줍니다.

위 내용은 구글, 교통 효율성 30% 향상시킬 수 있는 새로운 AI 모델 연구의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:sohu.com
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿