하나의 변수에 대한 삼차방정식의 풀이식!
한 변수의 삼차 방정식의 근 공식은 무엇입니까? ? 그냥 공식이요?
일변수 삼차 방정식의 근식 풀이 방법
일변수 삼차방정식의 근식은 일반적인 연역적 사고로는 구할 수 없지만, 일변수의 표준삼차방정식은 이차방정식 풀이의 근공식과 유사한 방법으로 특별한 형태인 x^3+로 단순화될 수 있습니다 방정식.px+q=0. 이 방법은 한 변수의 삼차 방정식의 근을 보다 편리하게 푸는 데 도움이 될 수 있습니다.
한 변수의 삼차 방정식의 해 공식에 대한 해는 귀납적 사고를 통해서만 얻을 수 있습니다. 일변수 일차방정식의 근식, 일변수 2차 방정식, 특수 고차방정식의 근식의 형태를 토대로 요약하여 일변수 삼차방정식의 근식의 형태를 구할 수 있다. 귀납법으로 얻은 형태는 x = A^(1/3) + B^(1/3)이며, 이는 두 개의 열린 입방체의 합입니다. 그러면 A와 B, p와 q의 관계를 찾아야 합니다. 구체적인 방법은 다음과 같습니다.
(1) x=A^(1/3)+B^(1/3)의 양쪽 변을 동시에 세제곱하면
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3) x=A^(1/3)+B^(1/3)이므로 (2)는
로 변환될 수 있습니다.x^3=(A+B)+3(AB)^(1/3)x, 항을 이동하면
을 얻을 수 있습니다.(4)x^3-3(AB)^(1/3)x-(A+B)=0, 단일 변수의 3차 방정식 및 특수 유형 x^3+px+q=0과 비교,
라고 볼 수 있어요(5)-3(AB)^(1/3)=p,-(A+B)=q, 단순화하여
(6)A+B=-q,AB=-(p/3)^3
(7) 이와 같이 한 변수의 삼차 방정식의 근식은 실제로 이차 방정식의 근식으로 변환되는데, 이는 A와 B가 이차 방정식의 두 근으로 간주될 수 있기 때문이며, (6) ay^2+by+c=0, 즉
의 2차 방정식의 두 근에 대한 베다 정리의 형태에 관한 것입니다.(8)y1+y2=-(b/a),y1*y2=c/a
(9) (6)과 (8)을 비교하면 A=y1, B=y2, q=b/a,-(p/3)^3=c/a
로 설정할 수 있습니다.(10) ay^2+by+c=0 유형의 이차 방정식의 근 공식은
이므로y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
는
로 변형될 수 있습니다.(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
(9)의 A=y1, B=y2, q=b/a,-(p/3)^3=c/a를 (11)에 대입하면
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13) A와 B를 x=A^(1/3)+B^(1/3)에 대입하면
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/ 2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
방정식 (14)는 한 변수의 3차원 방정식의 실제 근해일 뿐입니다. Vedic 정리에 따르면 한 변수의 삼차 방정식은 세 개의 근을 가져야 합니다. 그러나 Vedic 정리에 따르면 다음 중 하나가 필요합니다. 근은 한 변수의 삼차 방정식에서 발견되며, 다른 두 근은 쉽게 찾을 수 있습니다.
한 변수의 삼차 방정식의 근 공식일변수 삼차 방정식의 근식 풀이 방법
1변수 삼차방정식의 근식은 일반적인 연역적 사고로는 구할 수 없지만, 표준 삼차방정식은 2차방정식의 근식을 풀기 위한 유사한 공식에 의해 특별한 형태인 x^3+로 단순화될 수 있습니다. +q=0. 이 방법은 한 변수의 삼차 방정식의 근을 보다 편리하게 푸는 데 도움이 될 수 있습니다.
한 변수의 삼차 방정식의 해 공식에 대한 해는 귀납적 사고를 통해서만 얻을 수 있습니다. 일변수 일차방정식의 근식, 일변수 2차방정식, 특수 고차방정식의 근식의 형태를 토대로 요약하여 일변수 삼차방정식의 근식의 형태를 구할 수 있다. 귀납법으로 얻은 형태는 x = A^(1/3) + B^(1/3)이며, 이는 두 개의 열린 입방체의 합입니다. 그러면 A와 B, p와 q의 관계를 찾아야 합니다. 구체적인 방법은 다음과 같습니다.
(1) x=A^(1/3)+B^(1/3)의 양쪽 변을 동시에 세제곱하면
(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))
(3) x=A^(1/3)+B^(1/3)이므로 (2)는
로 변환될 수 있습니다.
x^3=(A+B)+3(AB)^(1/3)x, 항을 이동하면을 얻을 수 있습니다.
(4)x^3-3(AB)^(1/3)x-(A+B)=0, 단일 변수의 3차 방정식 및 특수 유형 x^3+px+q=0과 비교,라고 볼 수 있어요
(5)-3(AB)^(1/3)=p,-(A+B)=q, 단순화하여(6)A+B=-q,AB=-(p/3)^3
(7) 이런 식으로 한 변수의 삼차 방정식의 근 공식은 실제로 이차 방정식의 근 공식으로 변환되는데, 이는 A와 B가 이차 방정식의 두 근으로 간주될 수 있기 때문이며, (6) ay^2+by+c=0, 즉
의 2차 방정식의 두 근에 대한 베다 정리의 형태에 관한 것입니다.
(8)y1+y2=-(b/a),y1*y2=c/a(9) (6)과 (8)을 비교하면 A=y1, B=y2, q=b/a,-(p/3)^3=c/a
로 설정할 수 있습니다.
(10) ay^2+by+c=0 유형의 이차 방정식의 근 공식은이므로
y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)
는
로 변형될 수 있습니다.
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
(9)의 A=y1, B=y2, q=b/a,-(p/3)^3=c/a를 (11)에 대입하면
(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13) A와 B를 x=A^(1/3)+B^(1/3)에 대입하면
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/ 2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
방정식 (14)는 한 변수의 3차원 방정식의 실제 근해일 뿐입니다. Vedic 정리에 따르면 한 변수의 삼차 방정식은 세 개의 근을 가져야 합니다. 그러나 Vedic 정리에 따르면 다음 중 하나가 필요합니다.
뿌리가 발견되면 나머지 두 뿌리도 쉽게 찾을 수 있습니다.
위 내용은 하나의 변수에 대한 삼차방정식의 풀이식!의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Windows 설정에서 Drive Health 경고는 무엇을 의미하며 디스크 경고를받을 때 어떻게해야합니까? 이 PHP.CN 튜토리얼을 읽고이 상황에 대처할 수있는 단계별 지침을 얻으십시오.

기사는 Windows 레지스트리 편집, 예방 조치, 백업 방법 및 잘못된 편집의 잠재적 문제에 대해 설명합니다. 주요 이슈 : 부적절한 변화로 인한 시스템 불안정성 및 데이터 손실의 위험.

기사는 시작, 중지, 서비스 재시작 및 안정성 모범 사례를 포함하여 시스템 건강을위한 Windows 서비스 관리에 대해 논의합니다.

증기 구름 오류는 여러 가지 이유로 인해 발생할 수 있습니다. 게임을 원활하게 플레이하려면 게임을 시작하기 전에이 오류를 제거하기 위해 몇 가지 조치를 취해야합니다. Php.cn Software는이 게시물에서 가장 유용한 정보뿐만 아니라 몇 가지 최선의 방법을 소개합니다.

기사에서는 회복 및 대량 변경을 포함하여 Windows의 파일 유형에 대한 기본 앱 변경에 대해 설명합니다. 주요 이슈 : 내장 벌크 변경 옵션 없음.

"WMI (Windows Metadata and Internet Services)와의 연결을 설정할 수 없음"을 볼 수 있습니다. 이벤트 뷰어의 오류. Php.cn 의이 게시물은 Windows 메타 데이터 및 인터넷 서비스 문제를 제거하는 방법을 소개합니다.

KB5035942 업데이트 문제 - 충돌 시스템은 일반적으로 사용자에게 발생합니다. 가려진 사람들은 충돌 시스템, 설치 또는 건전한 문제와 같은 문제에서 벗어날 수있는 방법을 찾기를 희망합니다. 이러한 상황을 목표로,이 게시물은 Php.cn Wil이 게시했습니다

이 기사는 시스템 설정을 관리하기 위해 Windows에서 그룹 정책 편집기 (GPEDIT.MSC)를 사용하는 방법을 설명하고 일반적인 구성 및 문제 해결 방법을 강조합니다. gpedit.msc는 Windows 홈 에디션에서 사용할 수 없다고 제안합니다.
