> 컴퓨터 튜토리얼 > 컴퓨터 지식 > 함수의 단조성에 대한 질문

함수의 단조성에 대한 질문

WBOY
풀어 주다: 2024-01-07 14:45:59
앞으로
487명이 탐색했습니다.

함수 단조성 질문

1))g(x)=x에는 두 개의 서로 다른 실수 근이 있습니다

(bx-1)/(a^2x+2b)=x

b^2- 4a^2>0

b의 절대값 > 2a의 절대값

a>0일 때, b>2a

f(x) 이미지 개방은 위쪽, 대칭축 x= - b/2a

그래서 f(x)는 (-1, 양의 무한대)에서 증가하는 함수입니다

그래서 f(x)는 (-1,+1)에서 증가하는 함수입니다

a

f(x) 이미지 열기는 아래쪽, 대칭축 x= -b/2a >1

그래서 f(x)는 (음의 무한대, 1,)에서 증가 함수입니다

그래서 f(x)는 (-1,+1)에서 증가하는 함수입니다

요약하자면, f(x)는 (-1,1)에 대해 단조 증가하는 함수입니다

2.x3

a 루트(b^2-4a)>루트(b^2-4a^2)>-루트(b^2-4a^2)>-루트(b^2-4a).

a>0, 그 다음 a^2(b^2-4a)>b^2-4a^2임을 알 수 있습니다.

(a-1)[b^2(a+1)-4a^2]>0 .

a>1 또는 a0).

그러니까 a>1

함수 단조성 연습

1. y=f(x)가 R의 감소 함수이고 y=f(IX-3I)

의 단조 감소 구간이라고 가정합니다.

----------------

함수 u=IX-3I, x∈R이 (-, 3]에서 단조 감소하고 y=f(u)=f(IX-3I)가 (-, 3]에서 단조 증가한다고 가정합니다.

함수 u=IX-3I, x∈R은 [3, +무한대)에서 단조 증가하고, y=f(u)=f(IX-3I)는 [3, )에서 단조 감소합니다.

즉, 함수 y=f(IX-3I)의 단조롭게 감소하는 구간은 [3,무한대)입니다

---------------이해가 되지 않는다면 다르게 표현해 보겠습니다.

x1

│x2-3│, f (│x1-3│) 3에서 단조롭게 감소합니다. ------------------

2차 함수 f(x)는 f(0)=1, f(x+1)-f(x)=2x를 충족하는 것으로 알려져 있습니다. f(x)의 분석 공식을 사용해 보세요

------------

2차 함수 f(x)=ax^2+bx+c

를 가정해 보겠습니다.

f(0)=1에서 c=1을 얻습니다

그러니까 f(x)=ax^2+bx+1

그래서 f(x+1)=a(x+1)^2+b(x+1)+1

f(x)=ax^2+bx+1

그래서 f(x+1)-f(x)=2ax+a+b

f(x+1)-f(x)=2x로 알려져 있습니다

그러면 x에 대한 다항식 2ax+a+b는 2x와 같고 계수도 같습니다

그러므로 a=1, a+b=0이면 b=-1

f(x)=x^2-x+1

------

2. [1,4]에 정의된 함수 f(x)는 부등식 f(1-2a)-f(4+a)>0을 만족하는 실수 집합인 감소 함수인 것으로 알려져 있습니다.

---------------

부등식을 f(1-2a)>f(4+a)로 변경하고 함수의 단조성을 사용하여 해당 규칙 f를 제거할 때 함수의 정의역에 주의하세요

함수 f(x)의 정의역은 [1,4]이며, 실수 a는 다음 세 가지 부등식을 동시에 만족합니다.

1 1 1-2a 부등식 그룹을 풀면 다음을 얻습니다. -1

그러므로 실수 a의 값 범위는 (-1,0]

입니다.

질문 2를 비교하고, 질문 3을 직접 풀어보세요...

2차 함수와 단조성에 대해 질문하세요

1) 분석: ∵대칭축은 X=-1의 2차 함수 y=f(x)이며 R의 최소값은 0이고 f(1)=1

입니다.

함수 f(x)=ax^2+bx+c=a(x+b/(2a))^2+(4ac-b^2)/4a를 가정해 보세요

∴a>0,-b/(2a)=-1==>b=2a,(4ac-b^2)/4a=0==>4ac=b^2

∴4ac=4a^2==>c=a

그리고 a+b+c=1==>4a=1==>a=1/4,b=1/2,c=1/4

∴ 함수의 분석 공식은 f(x)=1/4x^2+1/2x+1/4

입니다.

2) g(x)=(z+1)f(z-1)-zx-3이 [-1,1]에 속하는 X에 대한 증가 함수인 경우 실수 z의 값 범위

분석: 1)f(x)=1/4x^2+1/2x+1/4

에서

f(x-1)=1/4x^2-1/2x+1/4+1/2x-1/2+1/4=1/4x^2

g(x)=(z+1)1/4x^2-zx-3=(z+1)/4{[x-2z/(z+1)]^2-[(4z^2+12z +12)/(z+1)^2]}

=(z+1)/4[x-2z/(z+1)]^2-(z^2+3z+3)/(z+1)

∵g(x)는 X가 [-1,1]에 속할 때 증가하는 함수입니다

(z+1)/4>0==>z>-1일 때

∴2z/(z+1)

2zz ∴-1 (z+1)/4

z일 때 ∴2z/(z+1)>=1==>2z

z>=1, 분명히 z과 모순됩니다 (z+1)/4=0==>z=-1일 때

∴g(x)=x-3, 분명히 g(x)는 X가 [-1,1]에 속할 때 증가 함수입니다

요약하자면, g(x)는 X가 [-1,1], -1에 속할 때 증가 함수입니다. 3) 가장 큰 실수 m(m은 1보다 큼), X가 [1, m]에 속하는 한, f(x+t)는 다음보다 작습니다. 또는 x

와 같음

분석: 1)f(x)=1/4x^2+1/2x+1/4

에서

f(x+t)=1/4(x+t+1)^2

(x+t+1)^2 x^2+2(t-1)x+(t+1)^2 t=0일 때 x^2-2x+1

x=1

t>0일 때, ⊿=4(t-1)^2-4(t+1)^2=-16t t

0때

x1=(1-t)-2√(-t), x2=(1-t)+2√(-t)

(1-t)+2√(-t)=1==>t=-4라고 합시다

∴m=x2=(1-t)+2√(-t)=9

∴실수 t=-4가 있습니다. X가 [1,9]에 속하는 한 f(x-4t)는 x보다 작거나 같습니다.

위 내용은 함수의 단조성에 대한 질문의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

원천:docexcel.net
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿